Header

UZH-Logo

Maintenance Infos

Stability and Structure of Mixed-Ligand Metal Ion Complexes That Contain Ni(2+), Cu(2+), or Zn(2+), and Histamine, as well as Adenosine 5 `-Triphosphate (ATP(4-)) or Uridine 5 `-Triphosphate (UTP(4-)): An Intricate Network of Equilibria


Knobloch, B; Mucha, A; Operschall, B P; Sigel, H; Jezowska-Bojczuk, M; Kozlowski, H; Sigel, Roland K O (2011). Stability and Structure of Mixed-Ligand Metal Ion Complexes That Contain Ni(2+), Cu(2+), or Zn(2+), and Histamine, as well as Adenosine 5 `-Triphosphate (ATP(4-)) or Uridine 5 `-Triphosphate (UTP(4-)): An Intricate Network of Equilibria. Chemistry - A European Journal, 17(19):5393-5403.

Abstract

With a view on protein-nucleic acid interactions in the presence of metal ions we studied the ``simple'' mixed-ligand model systems containing histamine (Ha), the metal ions Ni(2+), Cu(2+), or Zn(2+) (M(2+)), and the nucleotides adenosine 5'-triphosphate (ATP(4-)) or uridine 5'-triphosphate (UTP(4-)), which will both be referred to as nucleoside 5'-triphosphate (NTP(4-)). The stability constants of the ternary M(NTP)(Ha)(2-) complexes were determined in aqueous solution by potentiometric pH titrations. We show for both ternary-complex types, M(ATP)(Ha)(2-) and M(UTP)(Ha)(2-), that intramolecular stacking between the nucleobase and the imidazole residue occurs and that the stacking intensity is approximately the same for a given M2+ in both types of complexes: The formation degree of the intramolecular stacks is estimated to be 20 to 50%. Consequently, in protein-nucleic acid interactions imidazole-nucleobase stacks may well be of relevance. Furthermore, the well-known formation of macrochelates in binary M(2+) complexes of purine nucleotides, that is, the phosphate-coordinated M(2+) interacts with N7, is confirmed for the M(ATP)(2-) complexes. It is concluded that upon formation of the mixed-ligand complexes the M(2+)-N7 bond is broken and the energy needed for this process corresponds to the stability differences determined for the M-(UTP)(Ha)(2-) and M(ATP)(Ha)(2-) complexes. It is, therefore, possible to calculate from these stability differences of the ternary complexes the formation degrees of the binary macrochelates: The closed forms amount to (65 +/- 10)%, (75 +/- 8)%, and (31 +/- 14)% for Ni(ATP)(2-), Cu(ATP)(2-), and Zn(ATP)(2-), respectively, and these percentages agree excellently with previous results obtained by different methods, confirming thus the internal validity of the data and the arguments used in the evaluation processes. Based on the overall results it is suggested that M(ATP)(2-) species, when bound to an enzyme, may exist in a closed macrochelated form only, if no enzyme groups coordinate directly to the metal ion.

Abstract

With a view on protein-nucleic acid interactions in the presence of metal ions we studied the ``simple'' mixed-ligand model systems containing histamine (Ha), the metal ions Ni(2+), Cu(2+), or Zn(2+) (M(2+)), and the nucleotides adenosine 5'-triphosphate (ATP(4-)) or uridine 5'-triphosphate (UTP(4-)), which will both be referred to as nucleoside 5'-triphosphate (NTP(4-)). The stability constants of the ternary M(NTP)(Ha)(2-) complexes were determined in aqueous solution by potentiometric pH titrations. We show for both ternary-complex types, M(ATP)(Ha)(2-) and M(UTP)(Ha)(2-), that intramolecular stacking between the nucleobase and the imidazole residue occurs and that the stacking intensity is approximately the same for a given M2+ in both types of complexes: The formation degree of the intramolecular stacks is estimated to be 20 to 50%. Consequently, in protein-nucleic acid interactions imidazole-nucleobase stacks may well be of relevance. Furthermore, the well-known formation of macrochelates in binary M(2+) complexes of purine nucleotides, that is, the phosphate-coordinated M(2+) interacts with N7, is confirmed for the M(ATP)(2-) complexes. It is concluded that upon formation of the mixed-ligand complexes the M(2+)-N7 bond is broken and the energy needed for this process corresponds to the stability differences determined for the M-(UTP)(Ha)(2-) and M(ATP)(Ha)(2-) complexes. It is, therefore, possible to calculate from these stability differences of the ternary complexes the formation degrees of the binary macrochelates: The closed forms amount to (65 +/- 10)%, (75 +/- 8)%, and (31 +/- 14)% for Ni(ATP)(2-), Cu(ATP)(2-), and Zn(ATP)(2-), respectively, and these percentages agree excellently with previous results obtained by different methods, confirming thus the internal validity of the data and the arguments used in the evaluation processes. Based on the overall results it is suggested that M(ATP)(2-) species, when bound to an enzyme, may exist in a closed macrochelated form only, if no enzyme groups coordinate directly to the metal ion.

Statistics

Citations

14 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 12 Mar 2012
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:May 2011
Deposited On:12 Mar 2012 16:11
Last Modified:13 May 2017 07:50
Publisher:Wiley-Blackwell
ISSN:0947-6539
Publisher DOI:https://doi.org/10.1002/chem.201001931
Other Identification Number:ISI:000290214200023

Download

Preview Icon on Download
Content: Accepted Version
Filetype: PDF - Registered users only
Size: 328kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations