Header

UZH-Logo

Maintenance Infos

Cost-effective fluorescent amplified fragment length polymorphism (AFLP) analyses using a three primer system


Stölting, Kai N; Clarke, Andrew C; Meudt, Heidi M; Blanckenhorn, Wolf U; Wilson, Anthony B (2011). Cost-effective fluorescent amplified fragment length polymorphism (AFLP) analyses using a three primer system. Molecular Ecology Resources, 11(3):494-502.

Abstract

The amplified fragment length polymorphism (AFLP) technique is a widely used multi-purpose DNA fingerprinting tool. The ability to size-separate fluorescently labelled AFLP fragments on a capillary electrophoresis instrument has provided a means for high-throughput genome screening, an approach particularly useful in studying the molecular ecology of non-model organisms. While the ‘per-marker-generated’ costs for AFLP are low, fluorescently labelled oligonucleotides remain costly. We present a cost-effective method for fluorescently end-labelling AFLPs that should make this tool more readily accessible for laboratories with limited budgets. Both standard fluorescent AFLPs and the end-labelled alternatives pre- sented here are repeatable and produce similar numbers of fragments when scored using both manual and automated scoring methods. While it is not recommended to combine data using the two approaches, the results of the methods are qualitatively comparable, indicating that AFLP end-labelling is a robust alternative to standard methods of AFLP genotyping. For researchers commencing a new AFLP project, the AFLP end-labelling method outlined here is easily implemented, as it does not require major changes to PCR protocols and can significantly reduce the costs of AFLP studies.

Abstract

The amplified fragment length polymorphism (AFLP) technique is a widely used multi-purpose DNA fingerprinting tool. The ability to size-separate fluorescently labelled AFLP fragments on a capillary electrophoresis instrument has provided a means for high-throughput genome screening, an approach particularly useful in studying the molecular ecology of non-model organisms. While the ‘per-marker-generated’ costs for AFLP are low, fluorescently labelled oligonucleotides remain costly. We present a cost-effective method for fluorescently end-labelling AFLPs that should make this tool more readily accessible for laboratories with limited budgets. Both standard fluorescent AFLPs and the end-labelled alternatives pre- sented here are repeatable and produce similar numbers of fragments when scored using both manual and automated scoring methods. While it is not recommended to combine data using the two approaches, the results of the methods are qualitatively comparable, indicating that AFLP end-labelling is a robust alternative to standard methods of AFLP genotyping. For researchers commencing a new AFLP project, the AFLP end-labelling method outlined here is easily implemented, as it does not require major changes to PCR protocols and can significantly reduce the costs of AFLP studies.

Statistics

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 12 Mar 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2011
Deposited On:12 Mar 2012 13:22
Last Modified:05 Apr 2016 15:43
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1755-098X
Publisher DOI:https://doi.org/10.1111/j.1755-0998.2010.02957.x
PubMed ID:21481207

Download