Header

UZH-Logo

Maintenance Infos

Structure of a plant–flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands


Dupont, Y L; Hansen, D M; Olesen, J M (2003). Structure of a plant–flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography, 26(3):301-310.

Abstract

Confined within a volcanic caldera at 2000 m a.s.l., the sub-alpine desert of Tenerife, Canary Islands, harbors a distinct biota. At this altitude the climate is harsh and the growing season short. Hence, plant and animal communities, constituting the sub-alpine plant–flower-visitor network, are clearly delimited, both spatially and temporally. We investigated species composition and interaction structure of this system. A total of 11 plant species (91% endemics) and 37 flower-visiting animal species (62% endemics) formed 108 interactions. Numbers of interactions among species varied ten-fold within both plant and animal communities. Generalization level of a species was positively correlated with its local abundance. Two separate network analyses revealed a significantly nested structure. In relation to a plant–flower-visitor system, nestedness implies that specialized species (animals or plants) interact with a subset of the species pool visiting (animals) or being visited (plants) by more generalized species. Therefore, specialized, locally rare plants tend to be visited by generalized, locally abundant animals, and specialized, locally rare animals tend to utilize generalized, locally abundant food plants. Such patterns could have implications for conservation of the sub-alpine network, and stress the importance of preserving not only rare species, but also the more abundant ones, which may be key food resources or pollinators in the plant–flower-visitor network.

Abstract

Confined within a volcanic caldera at 2000 m a.s.l., the sub-alpine desert of Tenerife, Canary Islands, harbors a distinct biota. At this altitude the climate is harsh and the growing season short. Hence, plant and animal communities, constituting the sub-alpine plant–flower-visitor network, are clearly delimited, both spatially and temporally. We investigated species composition and interaction structure of this system. A total of 11 plant species (91% endemics) and 37 flower-visiting animal species (62% endemics) formed 108 interactions. Numbers of interactions among species varied ten-fold within both plant and animal communities. Generalization level of a species was positively correlated with its local abundance. Two separate network analyses revealed a significantly nested structure. In relation to a plant–flower-visitor system, nestedness implies that specialized species (animals or plants) interact with a subset of the species pool visiting (animals) or being visited (plants) by more generalized species. Therefore, specialized, locally rare plants tend to be visited by generalized, locally abundant animals, and specialized, locally rare animals tend to utilize generalized, locally abundant food plants. Such patterns could have implications for conservation of the sub-alpine network, and stress the importance of preserving not only rare species, but also the more abundant ones, which may be key food resources or pollinators in the plant–flower-visitor network.

Statistics

Citations

106 citations in Web of Science®
112 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 16 Jul 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, not refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2003
Deposited On:16 Jul 2012 13:10
Last Modified:05 Apr 2016 15:45
Publisher:Wiley-Blackwell
ISSN:0906-7590
Publisher DOI:https://doi.org/10.1034/j.1600-0587.2003.03443.x
Other Identification Number:Accession Number: WOS:000183344700005

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 301kB
View at publisher