Detection of specific antibodies in dogs infected with Angiostrongylus vasorum

Schucan, A; Schnyder, M; Tanner, I; Barutzki, D; Traversa, D; Deplazes, P

Abstract: Canine angiostrongylosis, caused by the nematode Angiostrongylus vasorum, is an emerging cardiopulmonary disease in Europe which can be fatal if left untreated. We determined the diagnostic value of the specific detection of antibodies against A. vasorum adult somatic antigen, adult excretory/secretory (E/S) antigen and first stage larvae (L1) somatic antigen in ELISAs. Also, A. vasorum adult somatic antigen purified by monoclonal antibodies (mAb) was evaluated in a sandwich-ELISA. Among the crude antigens, the best sensitivities when testing 21 naturally infected dogs were obtained using adult E/S and somatic antigen (85.7% and 76.2%, respectively), which were comparable with the results of the sandwich-ELISA based on mAb-purified antigens (81%). The ELISA performed with L1 antigen had the lowest sensitivity (42.9%). In experimentally inoculated dogs, the sensitivities ranged from 97.7% to 100% with all test settings. The specificity was 98.8% (92.5-99.9%, 95% CI) with all ELISAs using sera of 82 randomly selected dogs. Cross-reactions using adult somatic, adult E/S and L1 somatic antigen were observed in sera of dogs infected with Crenosoma vulpis, Dirofilaria immitis, Dirofilaria repens, and Eucoleus aerophilus. In contrast, using the mAb-purified antigens, the cross-reactions were minimal. Depending on the antigens used, specific antibodies were detected starting between 13 and 21 days post experimental inoculation (dpi), and at latest between 35 and 48 dpi, thus before or around the onset of patency. The serological follow-up of four A. vasorum-infected dogs after anthelmintic treatment at 88 dpi showed a decrease of antibody levels after drug administration, and the animals became seronegative 2-9 weeks later. Two untreated dogs remained seropositive. In four dogs treated 4 dpi, virtually no antibody-reaction was detectable, with the exception of the ELISA performed with L1 antigen. The early detection of specific antibodies against A. vasorum by ELISA represents a valid alternative for a reliable diagnosis and for follow-up investigations after anthelmintic treatment.

DOI: https://doi.org/10.1016/j.vetpar.2011.09.040

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-61696
Accepted Version

Originally published at:
Schucan, A; Schnyder, M; Tanner, I; Barutzki, D; Traversa, D; Deplazes, P (2012). Detection of specific antibodies in dogs infected with Angiostrongylus vasorum. Veterinary Parasitology, 185(2-4):216-224. DOI: https://doi.org/10.1016/j.vetpar.2011.09.040
Detection of specific antibodies in dogs infected with *Angiostrongylus vasorum*

A. Schucan a, M. Schnyder a, I. Tanner a, D. Barutzki b, D. Traversa c, P. Deplazes a,*

a Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 266a, CH-8057 Zurich, Switzerland

b Veterinary Laboratory Freiburg, 79120 Freiburg i.Br., Germany
c Department of Comparative Biomedical Sciences, University of Teramo, Piazza Aldo Moro 45, Teramo 64100, Italy

* Corresponding author. Tel. +41 44 635 85 02; fax: +41 44 635 89 07 E-mail address: deplazesp@access.uzh.ch

Abstract

Canine angiostrongylosis, caused by the nematode *Angiostrongylus vasorum*, is an emerging cardiopulmonary disease in Europe which can be fatal if left untreated. We determined the diagnostic value of the specific detection of antibodies against *A. vasorum* adult somatic antigen, adult excretory/secretory (E/S) antigen and first stage larvae (L1) somatic antigen in ELISAs. Also, *A. vasorum* adult somatic antigen purified by monoclonal antibodies (mAb) was evaluated in a sandwich-ELISA. Among the crude antigens, the best sensitivities when testing 21 naturally infected dogs were obtained using adult E/S and somatic antigen (85.7% and 76.2%, respectively), which were comparable with the results of the sandwich-ELISA based on mAb-purified antigens (81%). The ELISA performed with L1 antigen had the lowest sensitivity (42.9%). In experimentally inoculated dogs, the sensitivities ranged from 97.7 to 100% with all test settings. The specificity was 98.8% (92.5-99.9%, 95% CI) with all ELISAs.
using sera of 82 randomly selected dogs. Cross-reactions using adult somatic, adult E/S and L1 somatic antigen were observed in sera of dogs infected with *Crenosoma vulpis, Dirofilaria immitis, Dirofilaria repens*, and *Eucoleus aerophilus*. In contrast, using the mAb-purified antigens, the cross-reactions were minimal. Depending on the antigens used, specific antibodies were detected starting between 13 and 21 days post experimental inoculation (dpi), and at latest between 35 and 48 dpi, thus before or around the onset of patency. The serological follow-up of four *A. vasorum*-infected dogs after anthelmintic treatment at 88 dpi showed a decrease of antibody levels after drug administration, and the animals became seronegative 2-9 weeks later. Two untreated dogs remained seropositive. In four dogs treated 4 dpi, virtually no antibody-reaction was detectable, with the exception of the ELISA performed with L1 antigen. The early detection of specific antibodies against *A. vasorum* by ELISA represents a valid alternative for a reliable diagnosis and for follow-up investigations after anthelmintic treatment.

Key words: *Angiostrongylus vasorum*, dog, diagnosis, ELISA, serology.

1. Introduction

The currently most employed diagnostic method for the detection of *Angiostrongylus vasorum* infection, which can cause a potentially lethal disease in dogs, is based on the isolation of first stage larvae (L1) in faeces applying larval migration techniques such as the Baermann-Wetzel technique (Eckert et al., 2008). Repeated testing of faecal samples is suggested to increase the diagnostic sensitivity because of intermittent larval excretion (Oliveira-Junior et al., 2006). However, in cases of low worm burdens and when analysing posted faecal samples that arrive with delay at the laboratory and therefore contain inactive or dead larvae, sensitivity is
reduced and morphological differentiation from other lung worm larvae such as *Crenosoma vulpis* and *Filaroides* spp. is challenging (Eckert et al., 2008; McGarry and Morgan, 2009). Also, larvae should be differentiated from those of *Strongyloides* and/or hookworms that may be present in delayed samples, and from free-living or plant parasitic nematodes that may occur in samples collected from the ground.

FLOTAC, a technique based on the counting of larvae in chambers after spinning faecal samples onto a surface, is suggested to improve the diagnosis of *A. vasorum*, especially when larval migration techniques cannot be used (Schnyder et al., 2010b). However, this method is laborious and thus not applicable under some circumstances, e.g. for extended epidemiological investigations. With both, FLOTAC and Baermann-Wetzel technique, prepatent infections are not detected. As alternatives, novel diagnostic tools have been developed. A sandwich-ELISA using rabbit serum directed against whole adult worms was investigated for the detection of circulating *A. vasorum* antigen (Verzberger-Epshtein et al., 2008) and an ELISA using monoclonal and polyclonal antibodies has very recently been described (Schnyder et al., 2011). Furthermore, real-time PCR with DNA from blood or faeces has been evaluated with samples spiked with L1 (Jefferies et al., 2009), and a ‘sieve-PCR’ developed to facilitate the analysis of larger faecal volumes may be used as a non-invasive tool for wildlife surveillance and for confirmative diagnosis in definitive hosts (Al-Sabi et al., 2010). In particular, molecular techniques are recommended for prevalence studies in intermediate mollusc hosts (Ferdushy et al., 2009). Few studies have described immunological reactions in dogs infected with *A. vasorum* which could potentially be exploited for the serological detection of such infections. In experimentally infected dogs, specific antibodies against *A. vasorum* adult somatic antigen were detected in ELISA starting 14 days post inoculation (dpi) (Cury et al., 1996). In this study, the pre-absorption of sera with extracts of *Toxocara canis* increased the specificity of antibody detection. However, cross-
reactivity was still observed and was attributed to the possible presence of other helminths. A recently described ELISA, again using somatic antigen of adult *A. vasorum* parasites collected from red foxes, confirmed older results and demonstrated cross-reactivity with sera of dogs infected with *C. vulpis, T. canis* and *D. immitis* (Jefferies et al., 2011a). Western blot analyses of adult somatic antigen with sera of experimentally infected dogs revealed immunogenic antigens of different molecular weight (Cury et al., 2002). Analysing adult and L1 extracts, stage specific antigens of *A. vasorum* were identified and no cross-reactions were detected with sera from dogs naturally parasitized by intestinal helminths (De Oliveira Vasconcelos et al., 2008). Jefferies et al. (2011a) identified a dominant 30 kD band when immunoblotting canine serum samples confirmed positive for *A. vasorum* against somatic antigen of adult *A. vasorum* but slight cross reactions with serum samples from dogs infected with *C. vulpis, T. canis* and *D. immitis* were observed in the same range.

No immunological diagnostics for the detection of *A. vasorum* infections are currently commercially available and no purified or recombinant antigens have been produced. The aim of this study was to investigate the diagnostic values of native crude and purified antigens for the specific detection of antibodies directed against *A. vasorum* in naturally and experimentally infected dogs and to follow the dynamic of the specific antibody reactions in experimentally infected dogs.

2. Materials and methods

2.1. Dog sera

Sera from dogs experimentally infected with *A. vasorum* were derived from previously reported studies. In particular, sera from dogs treated with a spot-on solution containing imidacloprid 10 mg/kg and moxidectin 2.5 mg/kg body weight (Advocate®, Bayer Animal
Health) at 4 (n = 5) or 32 (n = 5) days post inoculation (dpi) during prepatency (Schnyder et al., 2009), sera from 4 dogs which were treated at 88 dpi but continued to excrete L3 until 100 – 108 dpi (Schnyder et al., 2010a) and sera from two untreated dogs were available. Additionally, sera from 21 naturally infected dogs showing clinical signs compatible with *A. vasorum* infection and confirmed for larval excretion by the Baermann technique were collected before treatment was initiated. Thirty sera from healthy blood donor dogs (which are intensively subjected to clinical and laboratory analyses) not originating from a known *A. vasorum* endemic area in Switzerland were used to determine the cut-off value, 27 of them showing a positive antibody reaction against *T. canis* E/S antigen (Fahrion et al., 2008). Dogs were not analysed by Baermann-Wetzel technique for exclusion of larval excretion. Specificity was determined with randomly selected sera of 82 dogs presented at the Clinic for Small Animals, and tested at the Clinical Laboratory of the Vetsuisse Faculty of the University of Zurich for various reasons excluding suspected parasitological infections, and with sera collected over three years in Germany from 52 dogs showing one or more clinical signs compatible with angiostrongylosis but without larval shedding as investigated with the Baermann technique (Barutzki and Schaper, 2009). Potential cross-reactions were tested with sera from dogs experimentally infected with *Ancylostoma caninum* (n=4, from the Institute of Parasitology, University of Veterinary Medicine, Hannover), from dogs naturally infected with *Crenosoma vulpis* (n=9) diagnosed by the presence of L1 in faeces (Barutzki and Schaper, 2009), from dogs infected with *Dirofilaria immitis* (n=20), diagnosed by the presence of circulating antigen (DiroCHEK® Synbiotics, San Diego, USA) and/or microfilariae (which were characterized with the acid phosphatase stain), from Italian dogs tested positive for the presence of *Dirofilaria repens* microfilariae by Knott-test and confirmed by PCR (n=5, Traversa et al., 2010) or *Eucoleus aerophilus* (syn. *Capillaria aerophila*) eggs detected by coproscopy after flotation and confirmed by PCR-coupled
sequencing (n=6, Traversa et al., 2011), and from Swiss dogs with alveolar liver echinococcosis (n= 8) diagnosed as previously described (Staebler et al., 2006).

2.2. Antigens

A. vasorum adult E/S antigen was obtained as previously described (Schnyder et al., 2011) from female, adult parasites which were isolated from experimentally infected dogs (Schnyder et al., 2009). Adult somatic antigen was produced from *A. vasorum* specimens isolated at necropsy from foxes and dogs and stored at –20⁰ C in phosphate buffered saline (PBS). In a second step, worms were homogenised in a Mixer Mill MM 300 device (Retsch GmbH, Haan, Germany) at 30 Hz for 1 min using a steel bead (diameter 3 mm, Schieritz & Hauenstein AG, Arlesheim, Switzerland). After three freezing/thawing steps using liquid nitrogen and a water-bath, the parasite material was ultrasonicated (Sonifier II W-250, Branson, Danbury, Connecticut, USA) and centrifuged at 14’000 g for 20 min at 4⁰ C. The supernatant containing the soluble somatic antigens was stored at -20⁰ C until further use.

Larval somatic antigen was obtained after isolation of *A. vasorum* L1 from faeces of experimentally infected dogs (Schnyder et al., 2009; Schnyder et al., 2010a) by the Baermann-Wetzel technique. Larval suspension was washed four times with PBS containing 200 IU penicillin/ml, 200 µg streptomycin/ml and 0.25 µg amphotericin B/ml (GIBCO) by centrifugation (250 g, for 5 min at +24⁰ C). Afterwards, larvae were collected after migration through a 20 µm mesh sieve at room temperature over night. After a further centrifugation step, the sediment containing the larvae was treated as described above for the production of the *A. vasorum* adult somatic antigen. Protein concentrations were assessed by a Bio-Rad protein assay.
2.3. Monoclonal antibodies

Production of monoclonal antibodies (mAb) against *A. vasorum* adult E/S antigen was based on a previously modified protocol (de StGroth and Scheidegger, 1980), already described in detail by Schnyder et al. (2011). Antibody production of the cells was checked by an ELISA using *A. vasorum* adult E/S antigen. Supernatants positive in the primary screening were subsequently tested for specificity in ELISA with *D. immitis* adult E/S antigen (Deplazes et al., 1995). Selected clones were subcloned twice to assure that the antibody production was monoclonal. Clones positive for *A. vasorum* adult E/S and negative for *D. immitis* adult E/S antigen were cultivated and supernatants concentrated as described (Schnyder et al., 2011). Isotypes were determined using a monoclonal antibody isotyping kit (Ap/PNPP, Pierce, Rockford, Illinois, USA).

2.4. ELISA

ELISAs were performed with the optimal antigen, antibody and conjugate concentrations according to the titration results. All test runs included a background control, a conjugate control and three control sera from a naturally infected dog (diluted 1:200), an experimentally infected dog (diluted 1:20,000) and an uninfected blood donor dog (diluted 1:200).

2.4.1. ELISA using crude *A. vasorum* antigens

Micro-ELISA plates (MaxiSorp, Nunc, Roskilde, Denmark) were coated (100 µl/well) either with *A. vasorum* adult E/S antigen (5 µg/ml), *A. vasorum* adult somatic antigen (5 µg/ml) or *A. vasorum* L1 somatic antigen (10 µg/ml) diluted in 0.1 M carbonate/bicarbonate coating buffer (pH 9.6) and stored at 4°C in a humid chamber over night. Plates were washed five times with physiological NaCl/0.3% Tween-20 (NaCl-T) and saturated for 30 min at 37°C.
with PBS (pH 7.2) containing 0.02% NaN₃, 0.05% bovine haemoglobin (Fluka) and 0.2%
Tween-20 (PBS-T). Sera were used in a standard dilution of 1:200 in PBS-T additionally
containing 10% foetal calf serum (fcs), and 100 µl diluted sera/well were incubated at 37° C
in a humid chamber for one hour. After washing five times with NaCl-T, the incubation and
washing steps were repeated with the conjugate. For this purpose, specific affinity-purified,
alkaline phosphatase conjugated goat anti-dog IgG (γ) antibodies (Kirkegaard and Perry Lab.
Inc., Gaithersburg, MD, USA) were used at a dilution of 1:250 in PBS-T (100 µl per well).
After the repetition of the washing steps, 100 µl/well of a 1 mg/ml solution of 4-nitrophenyl
phosphate (Sigma-Aldrich, Buchs, Switzerland) in 0.05 M carbonate/bicarbonate buffer (pH
9.8) containing 1 mM MgCl were added and incubated for 10 min at 37° C. Absorbance
values were read at 405 nm in a Multiscan RC ELISA reader (Thermo Labsystems, Helsinki,
Finland). The same methodology was performed for the selection of mAbs: the plates were
coated (100 µl/well) with *A. vasorum* adult E/S (5 µg/ml) or *D. immitis* adult E/S antigen (5
µg/ml). Supernatants of the cell cultures were diluted 1:2 in PBS-T and specific affinity
purified goat anti-mouse IgG (heavy plus light chains) antibodies conjugated to alkaline
phosphatase (Sigma) were used at a concentration of 1:5'000 in PBS-T.

2.4.2. ELISA using mAb-based purified *A. vasorum* adult somatic antigen

A sandwich-ELISA coating with mAbs was used to select potentially diagnostic antigens
isolated from the *A. vasorum* adult somatic antigen. The mAbs were used at concentrations of
1 µg/ml or 5 µg/ml, depending on the results of titration experiments. Adult somatic antigen
of *A. vasorum* was diluted at 10 µg/ml in PBS-T. Dog sera, conjugate and substrate were used
as previously described. In order to further select mAbs with potential for diagnostic use, this
sandwich-ELISA was performed with 12 selected test sera (from 3 infected and 9 uninfected
animals). Further samples were tested if a promising discrimination between positive and negative sera was observed.

2.5. Statistical analysis, animal permissions

Excel 2007 for Windows (Microsoft Corporation, Redmond, USA) was used to calculate means and standard deviations (SD). Sensitivities were calculated dividing the number of seropositive animals by the total number of infected animals of each sample group, while specificities were calculated dividing the number of seronegative animals by the total number of uninfected animals tested. Exact binomial 95% confidence intervals (CI) for means of binomial variables were calculated with unweighted data according to the method of Clopper and Pearson (1934).

Experiments with dogs, mice and rabbits were conducted according to the Swiss guidelines for animal experimentation and approved by the Cantonal Veterinary Office of Zurich prior to study start. They were carried out with facility-born animals at the experimental units of the Vetsuisse Faculty in Zurich (permission numbers 25/2006, 26/2007, 13/2008, 185/2008).

3. Results

3.1. Sensitivity and specificity

Sera of dogs naturally and experimentally infected with *A. vasorum* or other parasites as well as sera from healthy dogs and dogs with circulatory symptoms (Barutzki and Schaper, 2009) were used to determine the diagnostic values of the ELISAs (Tables 1 and 2).

Crude antigens: For natural, patent *A. vasorum* infections, high and comparable sensitivities of 76.2-100% were obtained with the adult E/S and the somatic antigen. Using L1 somatic
antigen, the sensitivity of detection of the naturally infected dogs was only 43%. However, no
change in sensitivity of this antigen was observed when samples were tested from
experimentally infected animals (Table 1). The specificity was relatively high (98.85%) with
all antigens when determined by testing 82 randomly selected sera of Swiss dogs presented
for reasons other than suspected parasitological infections. The specificity was 83-87% (Table
1) when samples were evaluated from a group of dogs from Germany with cardiopulmonary
signs. These dogs were negative for *A. vasorum* larvae in pooled faecal samples collected
over 3 days and tested with the Baermann-Wetzel technique.

Cross-reactions were tested with dogs with proven parasitic infections (Table 2). No positive
ELISA results were obtained with sera of dogs with patent *A. caninum* infections and dogs
with alveolar echinococcosis in all tests. Cross-reactions occurred in 22.2% of dogs naturally
infected with *C. vulpis* with all three crude antigens tested. Sera of dogs with *D. immitis*
infection were cross-reacting using the E/S antigen (5%), the L1 antigen (10%) and the adult
somatic antigen (20%). Sera from dogs naturally infected with *D. repens* showed more
pronounced cross-reactions (40% using the E/S antigen, 100% using the adult somatic antigen
and 80% using the L1 antigen). Seventeen percent of the sera from dogs tested positive for the
presence of *E. aerophilus* exceeded the cut-off-value using the E/S antigen, 50% using the
adult somatic antigen and 17% using the L1 antigen.

Purified antigens: Two mAbs (mAb Av 70/1 and mAb 5/5, both of IgG1 isotype but with
differing banding patterns in WB-analyses, results not shown) were selected for the ELISAs
with purified somatic antigens. The sensitivity of both these tests was comparable with the
ELISAs performed with somatic or E/S adult antigens. However, the specificities with the
sera from dogs with clinical signs were higher by trend, but not significantly different (Table
1) and cross-reactions were limited, especially concerning sera of dogs infected with *D. immitis*, *D. repens* and *E. aerophilus* (Table 2).

3.2. Detection of specific antibodies during experimental *A. vasorum* infections

Experimentally infected dogs seroconverted between 13 and 21 dpi, depending on the antigens used (Fig. 1). The earliest specific antibody detection was at day 13 (5 of the 6 dogs were positive) with the L1 antigen. Specific antibody reactions against the E/S adult antigen were found at 20 dpi (Fig. 1: 1 of 6 animals; Fig. 2: 3 of 5 dogs). The somatic adult antigen revealed first specific reactions at 34 dpi (2 of 6 animals, Fig. 1) and at 21 dpi (1 of 5 animals).

In both ELISAs with purified antigens, a sharp increase of specific antibodies was depicted at 42 dpi in all dogs. Larval excretion started between 47 and 55 dpi (data not shown). Specific antibody levels increased in all ELISAs until 42-50 dpi, thereafter, persistent or slightly declining positive ELISA values were observed during the experimental infection and before treatment (Fig. 1).

Declining antibody levels below the cut-off-value with all adult antigens were observed in four dogs after treatment (88 dpi, Fig. 1). Antibody decrease below the threshold required 2 - 9 weeks, depending on the intensity of antibody reactions before the treatment, and the ELISA adopted. In contrast, specific antibody levels persisted in 2 dogs without treatment (Fig.1). Five dogs already treated at 4 dpi showed no specific reactions against both adult antigens, with one exception (reactions just above the cut-off-value). However, using the L1 somatic antigen, a positive peak around 21-35 dpi in 3 of these 5 dogs was observed (Fig. 2, right side). Interestingly, no antibody increase with the same sera was observed against the mAb-purified antigens (Fig. 2). In contrast, dogs treated at 32 dpi (still in the pre-patent
period) showed positive antibody reactions until the end of the experiment at 55 dpi (Fig. 2, left side) in almost all cases.

4. Discussion

Comparing crude antigens of *A. vasorum* (adult E/S antigen, adult somatic antigen and L1 somatic antigen), a high sensitivity in naturally infected dogs was obtained using both, adult E/S and somatic antigen. In a previous experimental study using adult somatic antigens (Cury et al., 1996), no indications concerning sensitivity were given. In the same study, anti-*A. vasorum* antibodies were detected starting from 14 dpi, however, some dogs remained antibody-negative or became positive only 140 dpi, and potential cross-reactions were not excluded. De Oliveira Vasconcelos et al. (2008) also detected specific antibodies early after inoculation (15 dpi) and evaluated few, taxonomically not closely related helminths (*Dipylidium caninum, Ancylostoma caninum, T. canis*) for cross-reactions. Also Jefferies et al. (2011a) tested potential cross-reactivity with *C. vulpis, T. canis* and *D. immitis* and accordingly performed a cut-off adaptation in order to discriminate *A. vasorum*-positive sera from sera of dogs infected with the cited helminths. Further cross-reactivity against *D. repens* or *E. aerophilus* was not tested by this group. In the here presented study, cross-reactions against the somatic and E/S antigens were detected in sera of dogs infected with *C. vulpis, D. immitis, D. repens* and *E. aerophilus*. In contrast, the sandwich-ELISAs using adult somatic antigen purified with mAb were highly specific without a reduction of sensitivity. *C. vulpis* and *E. aerophilus* are distributed over Europe, *D. immitis* is actually still limited to Southern Europe, while *D. repens* has been recently shown to be spreading from eastern and southern to central Europe (Genchi et al., 2011). All these nematode species represent therefore a diagnostic challenge for *A. vasorum* serology. In particular, *A vasorum* and *D. immitis* share
common epitopes and induce strong cross-reactions, as confirmed by cross-reactions using adult somatic antigen in the direct ELISA in the here presented study. Consequently, the produced mAbs were evaluated with E/S antigen of both, adult *A. vasorum* and *D. immitis*. Several mAbs strongly reacting with *D. immitis* were excluded, leading to a highly specific sandwich-ELISA. This is confirmed by the ELISAs with crude antigens, identifying the abovementioned cross-reactions with *D. immitis* and also with *D. repens*. Further dogs with helminth infections such as *A. caninum* and *Echinococcus multilocularis* were tested for cross-reactions because these parasites accomplish a comparable migration within their host, however none were detected.

Sensitivities of all tests were very high in the experimentally infected dogs, while for naturally infected dogs the L1 somatic antigen showed a low sensitivity (42.9%, CI 21.8-66.0%) compared to the E/S antigen or the ELISA using mAb-based purified *A. vasorum* adult somatic antigen. However, more field studies have to be performed and critically analysed to determine the predictive values of different test combinations including specific antibody detection and specific detection of circulating antigens (Schnyder et al, 2011) in different endemic areas.

Specific antibodies were regularly detected between 13 and 21 dpi, depending on the antigens used. Earliest antibody-responses were obtained using L1 antigen, followed by the adult E/S antigen. Also, tests performed using mAb-based purified antigens detected antibodies between 35 and 48 dpi, thus before or around beginning of patency. In dogs treated at 4 dpi, poor antibody-reactions were observed, indicating that both mAbs used might be directed against epitopes of pre-adult and adult stages.

The serological follow-up after anthelmintic treatment of *A. vasorum*-infected dogs showed a continuous antibody decrease after drug administration. Success of anthelmintic treatment
was confirmed through negative faecal analysis. The experimental set-up with *A. vasorum* infected dogs delivered indications concerning the time necessary after treatment (2-9 weeks) for a negative serological antibody-result. The ELISA may be therefore used as a control test for efficacy of anthelmintic treatments against *A. vasorum*. In dogs treated at 4 dpi, virtually no antibody-reaction was observed, with the exception of the ELISA performed with L1 antigen of *A. vasorum*. A possible explanation for this exception would be the presence of L4 at that time point of infection, sharing common epitopes (Guilhon and Cens, 1973).

Concerning the decision which of the crude antigens could be routinely employed, it has to be taken into consideration that the production of *A. vasorum* adult E/S antigen is not only time-consuming but also requires living worms for cultivation. This purpose can be attained only by freshly euthanized infected dogs or foxes and through a delicate procedure as previously described (Schnyder et al., 2009; Schnyder et al., 2010a). In contrast, the adult somatic antigen which was employed in the sandwich-ELISAs is easier to produce since worms can be obtained from sections of hunted foxes. An alternative antigen would be the L1 antigen which unfortunately provides a low sensitivity. Jefferies et al. (2011b) identified immune-reactive adult *A. vasorum* proteins by 2D electrophoresis and mass spectrometry. Such recombinant proteins could be used in ELISA overcoming the limitations of native antigen preparation. The use of specific mAbs for the purification of *A. vasorum* antigens as here described increased the specificity of the ELISA, in particular when testing dogs with one or more clinical signs compatible with angiostrongylosis (96.2% with mAb Av 5/5 and 94.2% with mAb Av 70/1, instead of 86.5% using adult E/S or adult somatic antigen), but differences were not significant. The mAbs demonstrated their potential for further development of highly specific diagnostic tests. Similarly, in an earlier performed study with the related species *A. cantonensis*, a L5 antigen purified with a mAb able to recognize a specific epitope was used in an ELISA, resulting in high sensitivity and specificity (Chye et
Different reasons may explain the positive antibody reaction in sera from dogs with symptoms compatible with angiostrongylosis but negative by the Baermann technique. Faecal samples were correctly sampled over three days to account for intermittent larval shedding. However, larval migration techniques still may miss some *A. vasorum* infected dogs as previously shown (Verzberger-Epshtein et al., 2008). In addition, dogs in the prepatent period or dogs treated with anthelmintics possibly sterilizing adult female worms would result negative in Baermann-analysis. Finally, it has also to be considered that cross-reactions in ELISA may occur. In order to clarify these contradicting results, sera could be further analysed through species-specific antigen (Schnyder et al., 2011) or DNA detection (Jefferies et al., 2009), or through an additional faecal sample a few weeks later if clinical signs are persisting.

The sensitivity of larval detection in faecal samples can be increased by multiple faecal examinations, as reported from recent prevalence studies (Barutzki and Schaper, 2009; Taubert et al., 2008). Diagnostic testing with ELISA represents significant advantages: it enables to diagnose infection with *A. vasorum* before patency, requiring a single serum sample instead of repeated faecal samples and it has the potential for a rapid diagnostic test.

The serological detection of antibodies through ELISA is actually a valid and affordable method for diagnoses both in individuals and in population studies. The latter approach may increase the knowledge concerning the epidemiological situation and therefore disease awareness of this potentially fatal parasite for dogs. In fact, due to low compliance of animal owners for multiple collections of faeces and difficulties to always assure a proper storage of faecal samples, *A. vasorum* often remains undetected until dogs are affected by severe respiratory distress or coagulopathies. It has also to be considered that anthelmintic treatments of dogs performed 4-12 x per year (depending on the risk group) as i.e. recommended by the European Counsel for Companion Animal Parasites (http://www.ESCCAP.org) are not
necessarily eliminating metastrongyles such as *A. vasorum*. For an effective treatment, representatives of the group of the macrocyclic lactones such as moxidectin (single topic application, Schnyder et al., 2009) or milbemycin-oxime (weekly oral administration over 4 weeks, Conboy, 2004) are increasingly substituting compounds such as fenbendazole, which is recommended to be administered orally over 20 days (Willesen et al., 2007). The early detection of infections with *A. vasorum* allows a prompt anthelmintic intervention avoiding the onset of severe pathological changes which are possible even in the absence of clinical signs.

Acknowledgement

The authors thank Dr. med. vet. Barbara Riond from the Clinical Laboratory for the sera of blood donor dogs as well as of further randomly selected samples. This work represents the dissertation of Angela Cristina Schucan, veterinarian.

References

exposed and in helminth-free dogs after infection with low numbers of embryonated

Angiostrongylus vasorum in terrestrial slugs from forests and parks in the Copenhagen

Zoon. Dis, DOI: 10.1089/vbz.2010.0247.

Jefferies, R., Morgan, E.R., Shaw, S.E., 2009. A SYBR green real-time PCR assay for the
detection of the nematode *Angiostrongylus vasorum* in definitive and intermediate

of canine *Angiostrongylus vasorum* infection using real-time PCR and indirect ELISA.

Parasitol. 180, 56-61.

output of infected and re-infected dogs with *Angiostrongylus vasorum* (Baillet, 1866)

Table 1: Evaluation of *Angiostrongylus vasorum* antigens (somatic, excretory/secretory (E/S) or purified by monoclonal antibodies [mAb]) in ELISAs for the specific antibody detection in defined canine sera (CI confidence interval).

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity %</th>
<th>Specificity %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(95% CI)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>A. vasorum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>antigens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural A. vasorum infections³ (n=21)</td>
<td>85.7 (63.7-97.0)</td>
<td>100 (93.4-100)</td>
</tr>
<tr>
<td>Experimental A. vasorum infections³ (n=44⁴)</td>
<td>98.8 (93.4-100)</td>
<td>86.5 (74.2-94.4)</td>
</tr>
<tr>
<td>Random samples⁵ (n=82)</td>
<td>98.8 (93.4-100)</td>
<td>86.5 (74.2-94.4)</td>
</tr>
<tr>
<td>Cardio-pulmonary diseases⁶ (n=52)</td>
<td>82.7 (69.7-91.8)</td>
<td></td>
</tr>
<tr>
<td>Adult E/S¹</td>
<td>81.0 (58.1-94.6)</td>
<td>100 (93.4-100)</td>
</tr>
<tr>
<td>Adult somatic²</td>
<td>81.0 (58.1-94.6)</td>
<td>100 (93.4-100)</td>
</tr>
<tr>
<td>L1 somatic²</td>
<td>42.9 (21.8-66.0)</td>
<td>100 (93.4-100)</td>
</tr>
<tr>
<td>Adult somatic purified with mAb Av 70/1²</td>
<td>98.8 (84.1-98.8)</td>
<td>94.2</td>
</tr>
<tr>
<td>Adult somatic purified with mAb Av 5/5²</td>
<td>96.2 (86.8-99.5)</td>
<td></td>
</tr>
</tbody>
</table>

¹² Cut-off determination: Mean value of optical density (A 405nm) plus 4¹ or 3² standard deviations (SD) of thirty healthy blood donor dogs. Four SD were applied where a better
discrimination between positive and negative sera was obtained, based on the results with predefined sera.

³ Patent infections confirmed by the presence of L1 of *A. vasorum* isolated from faeces by the Baermann-Wetzel technique

⁴ Samples of six experimentally infected dogs during patency

⁵ Sera of randomly selected dogs without suspicion of a parasitological disease tested at the Clinical Laboratory of the Vetsuisse Faculty of the University of Zurich

⁶ Sera of dogs with one or more clinical signs compatible with angiostrongylosis. Larval detection was negative in pooled faecal samples collected over 3 days and analysed with the Baermann-Wetzel technique (Barutzki and Schaper, 2009)
Table 2: Evaluation of *Angiostrongylus vasorum* antigens (excretory/secretory [E/S], somatic or purified by monoclonal antibodies [mAb]) for potential cross-reactions in ELISA with sera of dogs with defined helminth infections.

<table>
<thead>
<tr>
<th>Angiostrongylus vasorum antigens</th>
<th>Ancylostoma caninum (^3)</th>
<th>Crenosoma vulpis (^4)</th>
<th>Dirofilaria immitis (^5)</th>
<th>Dirofilaria repens (^6)</th>
<th>Eucoleus aerophilus (^7)</th>
<th>Alveolar echinococcosis (^8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=4)</td>
<td>(n=9)</td>
<td>(n=20)</td>
<td>(n=5)</td>
<td>(n=6)</td>
<td>(n=8)</td>
<td></td>
</tr>
<tr>
<td>Adult E/S(^1)</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Adult somatic(^2)</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>L1 somatic(^2)</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Adult somatic purified with</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mAb Av 70/1(^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult somatic purified with</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mAb Av 5/5(^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) \(^2\) Cut-off determination as defined in Table 1

\(^3\) Sera of experimentally infected dogs (kindly provided from the Institute for Parasitology, University of Veterinary Medicine, Hannover)

\(^4\) Patent infections confirmed by the presence of L1 of *C. vulpis* in faeces isolated by the Baermann-Wetzel technique
Positive for antigen (Diro-CHECK®) or microfilariae of *D. immitis* (characterized with acid phosphatase stain).

Naturally infected dogs diagnosed through isolation of microfilariae by Knott-test and confirmed by genetic analyses of part of the mitochondrial *cox1* gene.

Naturally infected dogs diagnosed by flotation procedures of faecal samples with sugar solution, (specific gravity (s.g.) 1.200), and zinc sulphate solution (s.g. 1.350) and confirmed by PCR-coupled sequencing of part of the mitochondrial *cox1* gene.

Naturally infected dogs confirmed by PCR or histology of liver lesions (Staebler et al., 2006).
Figure captions

Figure 1:
Specific detection of serum antibodies (IgG) in ELISA against *Angiostrongylus vasorum* adult excretory/secretory (E/S), *A. vasorum* adult somatic and *A. vasorum* L1 somatic antigen, and two adult somatic antigens purified by monoclonal antibodies mAb Av 70/1 or mAb Av 5/5) in six dogs experimentally infected with *A. vasorum*. Four dogs were treated with imidacloprid/moxidectin spot-on (Advocate®) 88dpi (solid symbols) and two dogs were left untreated (open symbols). The time of treatment is marked with an arrow. The cut-off-value (horizontal line) was calculated as mean plus 4 (for ELISA with adult E/S antigen) or 3 (for the other ELISAs) standard deviations (SD) of the ELISA A_{405nm} values of sera from 30 healthy blood donor dogs.

Figure 2:
Specific detection of serum antibodies (IgG) in ELISA against *Angiostrongylus vasorum* adult excretory/secretory (E/S), *A. vasorum* adult somatic and *A. vasorum* L1 somatic antigen, and two adult somatic antigens purified by monoclonal antibodies mAb Av 70/1 or mAb Av 5/5) in ten dogs experimentally infected with *A. vasorum*. Five dogs were treated 32 dpi (left column) and five dogs were treated 4 dpi (right column) with imidacloprid/moxidectin spot-on (Advocate®). The time of treatment is marked with an arrow. The horizontal line represents the cut-off-value, (for determination see Fig. 1).
Fig. 2