Better off alone! Reproductive competition and ecological constraints determine sociality in the African striped mouse (Rhabdomys pumilio)

Schoepf, Ivana; Schradin, Carsten

Abstract: 1. While the reasons for group-living have been studied for decades, little is known about why individuals become solitary. 2. Several previous experimental studies could demonstrate that group-living can arise as a consequence of ecological constraints. 3. It has been argued that reproductive competition between group members leads to significant costs of group-living, being a main reason of solitary-living. However, so far, no studies tested experimentally whether reproductive competition can explain solitary-living. 4. Using a socially flexible species, the African striped mouse (Rhabdomys pumilio), we tested experimentally in the field whether dispersal and solitary-living are more likely to occur when reproductive competition is present. 5. We investigated ecological constraints, here expressed as a function of population density, by removing groups of striped mice and creating vacant territories. To control for the effect of reproductive competition, which occurs only during the breeding season, we performed experiments during both the breeding and the non-breeding season. This is the first removal experiment performed in a species with communal breeding during the non-breeding season. 6. During the breeding season, when population density was low, more striped mice from experimental groups moved into the vacant territories and became solitary than striped mice from control groups. This is in support of the ecological constraints hypothesis. 7. During the non-breeding season, striped mice remained group-living despite the availability of free territories. Significantly, more striped mice became solitary-living during the breeding than during the non-breeding season. This is the first experimental support for the reproductive competition hypothesis explaining solitary-living. 8. Analysis of the sexual maturity of males showed that males which became solitary had a higher reproductive potential than males that remained group-living. Analysis of the body mass data of females showed that more solitary females reproduced than group-living females. These results indicate that by becoming solitary individuals of both sexes avoided costs of reproductive competition within groups. 9. Our study provides experimental evidence that reproductive competition within groups can lead to dispersal and solitary-living.

DOI: https://doi.org/10.1111/j.1365-2656.2011.01939.x

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-61708
Accepted Version

Originally published at:
DOI: https://doi.org/10.1111/j.1365-2656.2011.01939.x
Better off alone! Reproductive competition and ecological constraints determine sociality in the African striped mouse (Rhabdomys pumilio)

Ivana Schoepf a, b* and Carsten Schradin a, b

a Department of Animal Behaviour, Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
b School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.

* Corresponding author: ivana.schoepf@ieu.uzh.ch

This article was published as:

Summary

1. While the reasons for group-living have been studied for decades, little is known about why individuals become solitary.
2. Several previous experimental studies could demonstrate that group-living can arise as a consequence of ecological constraints.
3. It has been argued that reproductive competition between group members leads to significant costs of group-living, being a main reason of solitary living. However, so far no studies tested experimentally whether reproductive competition can explain solitary-living.
4. Using a socially flexible species, the African striped mouse (Rhabdomys pumilio), we tested experimentally in the field whether dispersal and solitary-living are more likely to occur when reproductive competition is present.
5. We investigated ecological constraints, here expressed as a function of population density, by removing groups of striped mice and creating vacant territories. To control for the effect of reproductive competition, which occurs only during the breeding season, we performed experiments during both the breeding and the non-breeding season. This is the first removal experiment performed in a species with communal breeding during the non-breeding season.
6. During the breeding season, when population density was low, more striped mice from experimental groups moved into the vacant territories and became solitary than striped mice from control groups. This is in support of the ecological constraints hypothesis.
7. During the non-breeding season, striped mice remained group-living despite the availability of free territories. Significantly, more striped mice became solitary-living during the breeding than during the non-breeding season. This is the first experimental support for the reproductive competition hypothesis explaining solitary living.

8. Analysis of the sexual maturity of males showed that males which became solitary had a higher reproductive potential than males that remained group-living. Analysis of the body mass data of females showed that more solitary females reproduced than group-living females. These results indicate that by becoming solitary individuals of both sexes avoided costs of reproductive competition within groups.

9. Our study provides experimental evidence that reproductive competition within groups can lead to dispersal and solitary-living.

Key-words dispersal, population density, seasonality, social flexibility, solitary-living.

Introduction

Animals display highly diverse social systems, ranging from solitary species to species that form complex societies, such as cooperative breeders with helpers at the nest (Taborsky 1994) and eusocial species (Burd et al. 2000). Much research has aimed to understand why social groups form and how they are maintained (Hamilton 1964; Wilson 2000). In contrast, no experimental study thus far has investigated the reasons for solitary-living, which is often simply regarded as the default mode of social organisation. However, to understand the evolution of social organisation, we also need to know why many individuals prefer a solitary life.

Social groups can form through the delayed dispersal of offspring. Such groups normally consist of dominant breeders and subordinate non-breeding offspring, which may act as helpers at the nest and gain indirect fitness benefits (Hamilton 1964; Emlen 1997). Remaining as subordinates within a social group can be costly for both sexes because of intra-group conflict, reproductive suppression and infanticide (Emlen 1982a; Brant et al. 1998). Thus reproductive competition has been invoked as the main factor promoting dispersal and solitary-living in such groups (Emlen 1982a, b). Young adult individuals that delay dispersal and remain as philopatric subordinates in their natal group may incur costs: 1) by delaying onset of own reproduction and 2) by having to “pay to stay” (Gaston 1978) by performing costly helping behaviour (MacColl & Hatchwell 2002; but see also Ekman, Sklepkovych & Tegelstrom 1994; Vangen et al. 2001; Chapple 2003 for offspring that delay dispersal but do not help). Therefore, why would an individual delay dispersal to remain at home?

Ecological constraints models (such as the “habitat saturation hypothesis”, Emlen 1982a) predict that offspring will remain philopatric when resources such as free territories or mating opportunities are scarce (Selander 1964; Pruett-Jones & Lewis 1990). Under such conditions, ecological constraints (e.g. high population density, Koenig et al. 1992) impose high costs on dispersal and individuals are thought to be doing “the best of a bad job” by remaining philopatric. In other words, high dispersal costs imposed by ecological constraints increase the overall benefits of philopatry (Emlen 1982b, Emlen1994, Stacey & Ligon 1991). Thus the natal territory might become a “safe
haven” (Kokko & Ekman 2002) where young adult individuals have a better chance of survival by benefitting, for example, from group augmentation (Griesser, Nystrand & Ekman 2006), as well as a place where they can acquire new skills, such as parental care (Lancaster 1971; Komdeur 1996). For example under conditions of high population density it might pay for a young individual to delay dispersal until it is better able to compete with others for limited resources such as breeding territories (Arnold & Owens 1998).

Several removal experiments in the field have shown that the removal of ecological constraints, such as high population density, can lead to dispersal, supporting the ecological constraints hypothesis and explaining group-living (Pruett-Jones & Lewis 1990; Jacquot & Solomon 2004). For example, Komdeur (1992, 1994) showed through a manipulation experiment that habitat saturation and territory quality were important in maintaining group-living in the Seychelles warblers (Acrocephalus sechellensis). By experimentally providing vacant breeding sites, Bergmüller, Heg & Taborsky (2005) also demonstrated that helpers of a group-living cichlid (Neolamprologus pulcher) remained group-living in the presence of ecological constraints, but left and started independent breeding when ecological constraints were removed. Further experimental evidence was provided by Lucia et al. (2008), who manipulated population density in prairie voles (Microtus ochrogaster) and demonstrated that high population density leads to delayed dispersal and group formation. However, these experiments did not explain why individuals dispersed after ecological constraints were relaxed, though it has been long argued that costs associated with reproductive competition might promote dispersal and solitary-living (Emlen 1982a). However, it is more difficult to experimentally manipulate reproductive competition than ecological constraints. One way to investigate the effect of reproductive competition on dispersal decisions and sociality would be to compare dispersal between periods with and without reproductive competition, which could be achieved by using a seasonally breeding species with year round territoriality.

The African striped mouse (Rhabdomys pumilio) represents an ideal model organism to experimentally test whether ecological constraints favour group-living while reproductive competition favours solitary-living. Striped mice are socially flexible which means that individuals can switch between a group-living and a solitary tactic (Schradin et al. 2011). As a result, the social organisation of a striped mouse population can range from solitarily to complex family groups consisting of one breeding male, several breeding females, and their adult offspring of both sexes which remain philopatric as helpers at the nest (Schradin & Pillay 2004; Schradin, König & Pillay 2010). Previous correlative studies have shown that striped mice are solitary-living during the breeding season if population density is low, whereas they remain group-living when population density is high (Schradin, König & Pillay 2010). During the non-breeding season, when reproductive competition is absent, striped mice were found to be group-living independent of population density (Schradin, König & Pillay 2010). These conclusions were based on correlative observational data and need experimental testing to control for other environmental factors. In our study we aimed to test experimentally whether high population density promotes group-living and reproductive competition promotes dispersal. We manipulated population density by removing neighbouring groups of mice and providing vacant territories for other individuals to move into, thus testing “the ecological constraints hypothesis”, comparing between striped mice from control and
experimental groups in the same population, at the same time, and thus under identical ecological conditions. In addition, by taking advantage of the fact that striped mice are seasonal breeders (Schradin 2005), we were also able to investigate the role that reproductive competition plays on sociality by performing removal experiments both in the breeding and in the non-breeding season. This is thus the first removal study on a communally breeding species which was performed during the non-breeding season. We predicted greater natal dispersal and decreased group sizes in experimental groups than in control groups. Further, we expected striped mice to remain group-living during the non-breeding season when reproductive competition is absent, but to disperse and become solitary in the breeding season when reproductive competition is present.

Materials and methods

STUDY AREA AND STUDY SPECIES

The study was conducted between August 2007 and August 2010 on a field site of 30 hectares located on the farm Klein Goegap (29°42.30'S - 18°02.95'E) in the Northern Cape of South Africa. The vegetation type is classified as Succulent Karoo (Cowling, Esler & Rundel 1999), a semi-desert characterised by dwarf succulent shrubs. Here, striped mice typically form groups consisting of one breeding male and up to four breeding females, which are born during the previous breeding season (Schradin & Pillay 2004). Their offspring remain philopatric long after reaching adulthood (at an age of approximately four to six; Schradin, Schneider & Yuen 2009), acting as non-breeding helpers in their natal group (Schradin & Pillay 2004). In this study, we refer to individuals born the previous breeding season as “breeders”, and to individuals born in the season during which the experiments took place as “philopatrics” (to avoid confusion over the term “adult” as individuals belonging to both categories could have been classified as sexually mature adults). Under low population density, philopatrics can leave their natal group when four to six weeks old to start independent breeding. The breeding season typically lasts for about four months and coincides with the flowering of the nutritious ephemerals in spring (from August/September to November; Schradin & Pillay 2005a). The non-breeding season, normally lasts for nine months and takes place from the hot dry summer (December to April) to the end of the moist cold winter (from May to August).

DETERMINATION OF SOCIAL TACTIC

All the striped mice within the study area were identified and their group affiliation determined using a combination of trapping, radio-tracking and behavioural observations. Individuals were trapped directly at their nests using traps similar to Sherman’s traps (26 x 9 x 9 cm). Each mouse was weighed, sexed, marked with permanent individual ear tags (National Band and Tag Co., Newport, KY, U.S.A.), and with a code-specific non-toxic hair dye (Inecto Rapido, Pinetown, South Africa). Markings allowed for easy recognition of individuals during behavioural observations at their nests. Observations were conducted to determine group composition during the peak activity time for striped mice (i.e. in the early morning and in the late afternoon). All adult breeders and four philopatrics (two females and two males) of each group were fitted with radio-collars (Holohil, Carp, Ontario, Canada; 1.2-4.5g). In total, we radio-tracked 126 males and 166 females during four breeding seasons, and 81 males and 93 females during four non-
breeding seasons. Striped mice were radio-tracked using AOR 8000 radio-receivers to
determine home ranges and at night to determine composition of sleeping groups.

Striped mice were regarded as group-living if they shared the nest at night with
the same individuals for at least 75% of the nights they were radio-tracked. Individuals
that were found to spend at least 75% of the nights alone were regarded as solitary. We
did not find any individuals falling in between these two percentages, i.e. no individual
was recorded to spend between 26 and 74% of the nights with a group or alone.

EXPERIMENTAL DESIGN

Removal experiments consisted of a replicated 2 x 2 factorial design with treatment
(control, removal) and season (breeding, non-breeding) as factors. Each season we
conducted 2 replicates of controls and 2 replicates of treatments. Local population density
was manipulated by removing mice to create vacant territories for neighbouring striped
mice to move into. All the experiments were performed in a valley, with the removal
groups being the closest to the valley walls, such that these groups had neighbours only
on one side. At the time of the experiments all the territories within the study areas were
occupied by striped mice groups and no open space remained between the different
territories (for more information on how group enlarge their home ranges see Schradin et
al. 2010). Two replicates, separated by groups not used in the experiment, were carried
out at the same time. Six groups were used in each replicate: two groups were removed;
two groups were used as experimental groups and two groups were used as control
groups (Fig. 1). Experimental groups directly neighboured removed groups and control
groups, whereas control groups only neighboured experimental groups and additional
non-observed groups. In this way, striped mice from experimental groups directly
experienced a local reduction in population density, while striped mice from control
groups only experienced a reduction in population density when some of their neighbours
from experimental groups dispersed into the newly available territories. Whereas each
year different groups were used for experiments, within the same year the same groups
were observed for both the breeding and the non-breeding season. Before removal, home-
range size and group-affiliation were determined by radio-tracking mice six times per day
for a period of two weeks (see Schradin & Pillay 2005b for details on the method used).
Removal of groups took place immediately after radio-tracking for home-ranges had
ended. Using a combination of trapping, radio-tracking and nest observation we were
able to establish with precision to which group each mouse belonged to, and we were
thus able to successfully remove all the mice belonging to the “removal groups”.
Removed striped mice were used for breeding in a captive colony or in other studies
(brain immunohistochemistry; unpublished data). Trapping was continued in the vacant
territories and if striped mice of unknown origin (three individuals out of 16 replicates)
imigrated into the area, they were removed.

Striped mice from experimental and control groups were radio-tracked for an
additional four weeks after removal, which from our experience is a period of time long
enough to allow dispersal in this species (i.e. individuals will take between one and three
weeks to disperse at the beginning of the breeding season, unpublished data). In total,
eight replicates were carried out during the breeding season and eight replicates during
the non-breeding season.
Local population density was measured separately for each replicate after removal of striped mice. For striped mice from experimental groups, local population density was calculated as the total number of individuals of control and experimental groups divided by the area occupied by removal, experimental and control groups. For striped mice from control groups, local population density was calculated as the total number of individuals of control and experimental groups divided by the area occupied by experimental and control groups. As local population density was influenced by group-size of the studied control and experimental groups (local population density embeds group size), we did not include group-size as a separate variable.

Males were regarded as potentially reproductively active when they were scrotal (i.e. their testes were fully descended; see Schradin & Pillay 2005a). Females were regarded as potentially reproductively active when they had a perforated vagina or showed signs of lactation (Schradin & Pillay 2005a). Parturition was determined by changes in females’ body mass over a short period: a loss of > 10 g indicated that a female gave birth (Schubert, Pillay & Schradin 2009). A female was considered reproductively successful when she had given birth to at least one litter.

DATA ANALYSIS AND STATISTICS

Data analysis was performed using the statistical software R (version 2.11.0 R Development Core Team 2006). All statistical tests were two-tailed. Data were tested for normality using the Shapiro-Wilk Normality Test and are presented as mean ± standard deviation. To test the predictions that relaxed ecological constraints and the presence of reproductive competition would lead to greater natal dispersal and solitary living we first used a Wilcoxon Sign-Rank Test (with exact P-value calculations in R to correct for the small sample size). When the standard deviation was zero, we used the Sign Test instead. We used a Generalized Linear Model (GLM) with a binomial error family to analyse the proportion of group-living striped mice (N = 32; 16 experiments and 16 controls during both seasons), including relative population density, season (breeding and non-breeding) and treatment (experiment and control) as factors. Lines of best fit were fitted to the data for the breeding and the non-breeding season. We also used a GLM with a poisson error family to test for significant differences in the likelihood of individuals from four different social classes to become solitary: breeding males, breeding females, philopatric males and philopatric females. We first fitted a saturated model with a three way interaction between dispersal (group and solitary), reproductive status (breeder and philopatric) and gender (male and female). We then tested for the significance of this interaction by deleting it from a second model and comparing between the two models. Fisher’s Exact Tests were used to compare: a) the number of reproductively mature philopatric and solitary females at time of dispersal; b) the number of reproductively successful solitary and philopatric females at the end of the breeding season; and c) the number of males that became scrotal among solitary and philopatric males before and after dispersal took place.

Results

During the breeding season and before removal, group-size was 9.75 ± 3.45 individuals for control groups and 10.3 ± 5.34 individuals for experimental groups. During the non-breeding season and before removal, group-size was 7.9 ± 2.99 individuals for control
and 8.5 ± 2.94 individuals for experimental groups. Local population density was 11.10 ± 6.75 individuals / hectare for control groups and 12.71 ± 6.63 individuals / hectare for experimental groups during the breeding season, and 8.67 ± 7.29 individuals / hectare for control and 7.56 ± 4.06 individuals / hectare for experimental groups during the non-breeding season.

During the breeding season, more striped mice from experimental groups became solitary (18.81 ± 13.08%) than striped mice from control groups (3.49 ± 7.59%; Wilcoxon Sign Rank Test, V = 0, N = 8; p = 0.008; Fig. 2). During the non-breeding season, nearly all striped mice remained group-living (experimental groups: 99.31 ± 1.96%; control groups: 100 ± 0%; Sign Test, χ² = 1, N = 8, p > 0.70; Fig. 2). Significantly more striped mice from experimental groups dispersed and became solitary in the breeding (18.81 ± 13.08%) than in the non-breeding season (0.69± 1.96%; Wilcoxon Sign Rank Test; V = 35, N = 8; p = 0.016; Fig. 2).

For all 32 replicates combined (experimental and control groups during both seasons), the proportion of group-living striped mice was significantly influenced by season (i.e. more mice became solitary during the breeding season: GLM: F₁, 29 = 50.32, p < 0.001), treatment (i.e. more mice from experimental groups became solitary: GLM: F₁, 28 = 46.13, p < 0.001) and by the interaction between season and local population density (population density played a role only during the breeding season but not during the non-breeding season; GLM: F₁, 27 = 7.91, p = 0.009), while local population density alone did not have an effect (GLM: F₁, 30 = 1.21, p = 0.28). The best fit for the relationship between population density (PD) and percentage of group-living striped mice (%GL) during the breeding season for the experimental groups (N=8) was obtained from a hyperbolic curve (R = 0.87, F₂, 7 = 574.01, p < 0.001, Fig. 3), resulting in y = a + (b / x), with y = %GL; a = 107.65; b = -274.65 and x = PD (Fig. 3).

Breeding males (3 of 28), breeding females (3 of 27), philopatric males (19 of 76) and philopatric females (12 of 86) did not differ in their likelihood of becoming solitary (i.e. there were similar sex-by-reproductive status interactions, GLM: Df Residuals = 0.62, p = 0.43).

At the time of dispersal, more females that would become solitary were reproductively mature (11 of 12 females) than females that remained philopatric (48 of 103 females; Fisher Exact Test, p < 0.000, Fig. 4). No females reproduced before dispersal. At the end of the breeding season we found that more females that had become solitary had produced at least one litter (9 of 12 females), while very few females that remained philopatric had reproduced (13 of 103 females; Fisher Exact Test, p = 0.004, Fig. 5).

At the time of dispersal, more males that would become solitary were scrotal (19 of 19 males) than males that remained philopatric (32 of 109 males; Fisher Exact Test, p < 0.000, Fig. 6). At the end of the breeding season more solitary males (19 of 19) were scrotal than philopatric males (36 of 109; Fisher Exact Test, p < 0.000, Fig. 6). Philopatric males did not differ in scrotality at dispersal and at the end of the breeding season (Fisher Exact Test, p = 0.66, Fig. 6).

**Discussion**

Striped mice became solitary and moved into the vacant territories as they became available, but only during the breeding season when reproductive competition was
present. During the non-breeding season, striped mice remained group-living, even when
vacant territories were available. Striped mice that became solitary had a higher
reproductive capacity (males) or success (females), indicating that they were successful
in avoiding reproductive competition. This is the first experimental field study providing
evidence that reproductive competition can cause solitary-living when ecological
constraints are relaxed.

Population density affected sociality in striped mice, but only during the breeding
season. When population density was high and all the territories were occupied, striped
mice remained group-living, supporting the habitat saturation hypothesis (Emlen 1982a;
Hatchwell & Komdeur 2000). In contrast, more individuals dispersed and became solitary
when local population density was low and vacant territories were available, providing an
important resource for striped mice (Schradin, König & Pillay 2010). It has been
suggested that not only the availability but also the quality of the resources available may
affect the decision of an individual to disperse (Komdeur 1992). In our study we did not
measure territory quality, however the territories from which we removed groups were
directly adjacent the territories of experimental groups and were of similar size, supported
a similar number of individuals as neighbouring experimental territories and striped mice
belonging to experimental groups readily moved into the removed territories and took
them over. This indicates that differences in territory quality did not play a significant
role in our study. Our study thus indicates that breeding territories are a limiting resource
for striped mice when population density is high.

The results of our study concur with correlative results obtained from an eight
years long field study on a neighbouring population of striped mice, living only three
kilometres away from our experimental field site (Schradin, König & Pillay 2010). Similarly to the observations of Schradin, König & Pillay (2010), our experiment showed
that population density influences sociality, but only during the breeding season. In both
studies it was found that a hyperbolic curve is the best fit for the relationship between
population density and percentage of group-living striped mice during the breeding
season, while outside the breeding season no relationship exists between population
density and sociality (compare our Fig. 3 with Fig. 2 in Schradin, König & Pillay 2010).
Previous experiments performed during the breeding season in fish (Bergmüller, Heg &
Taborsky 2005; Stiver et al. 2006, Wong 2010), birds (Pruett-Jones & Lewis 1990;
Walters et al. 1991; Komdeur 1992) and mammals (Jacquot & Solomon 2004) already
confirmed predictions of the ecological constraints hypothesis especially that groups form
when resources are limited (Koenig et al. 1992; Kokko & Ekman 2002; Baglione et al.
2005). Ours is the first experiment in a mammal under natural conditions (vs. experiments in enclosures: Jacquot & Solomon 2004; Lucia et al. 2008) demonstrating
the importance of territory availability on sociality.

While ecological constraints could explain why striped mice remained nataly
philopatric when population density was high, they cannot explain why they did not
disperse when vacant territories were available in the non-breeding season. Reproductive
competition can be high in striped mice of both sexes. In each group, a single breeding
male monopolises several communally breeding females (Schradin et al. 2009) and
reproductively suppresses the adult philopatric males of the group (Schradin, Schneider
& Yuen 2009). Female striped mice show intra-sexual aggression and infanticide towards
the pups of other females within the group (Schradin, König & Pillay 2010). Thus, we
attribute the difference in the results obtained between the breeding and non-breeding seasons to the role of reproductive competition which only occurs during the breeding season.

If reproductive competition is the reason for becoming solitary living in striped mice, then solitary striped mice should be reproductively more successful than group-living ones. In support for this, we found that solitary males were scrotal and thus fully sexually mature, while many philopatric males (of the same age and body mass as solitary males) were not scrotal. In several cooperative-breeding species, subordinates are reproductively suppressed by dominant breeders (Blumstein & Armitage 1999, Saltzman et al. 2006; for male striped mice see Schradin, Schneider & Yuen) or may delay reproductive maturity to avoid aggressive expulsion by the dominant breeders (Hamilton 2004). In our study, most of the male striped mice that remained philopatric also remained unscrotal during the entire breeding season, suggesting that they were unable to escape reproductive suppression. While we could not measure reproductive success of males, our data indicate that solitary males, which were all scrotal, might have reproduced, while most of the philopatric males could not reproduce, as they were not scrotal. For females, our data gave even better support: females that dispersed were more reproductively mature than group-living philopatrics, and 75% of solitary females reproduced, but only 13% of philopatric females. Our results indicate that striped mice that became solitary reduced costs of reproductive competition within groups, which were significant for striped mice that remained philopatric.

While reproductive competition is one cost of group-living, remaining within the natal group may also offer considerable advantages. Benefits of group-living include enhanced protection against predation, better resource defence and energy savings (Krause & Ruxton 2002). Predation pressure, mainly from many-horned adders (\emph{Bitis cornuta}), jackal buzzards (\emph{Buteo rufofuscus}) and African wildcats (\emph{Felis silvestris lybica}), was significant at our field site, with > 40% of radio-collared striped mice lost before the end of our experiment. Increased group-vigilance has been suggested as one of the potential advantages of communal nesting and has been reported for several species (Gagliardo & Guildford 1993; Krebs & Davies 1993). Striped mice sleeping in groups might benefit from increased vigilance against potential predators at night (Schradin 2005). Additionally, groups may be better able to defend territories than single individuals, as all group-members participate in territorial defence (Schradin 2004). Territories contain essential feeding and nesting areas during periods of scarcity, such as during the dry season. Most importantly, by remaining within the group, striped mice can obtain thermoregulatory benefits from huddling together at night, significantly reducing energy expenditure and water consumption: benefits which are particularly important for a species that lives in a semi-desert environment (Scantlebury \emph{et al.} 2006). Costs of group living can include intra-group competition for limited resources such as food, and transmission of parasites (Danchin, Giraldeau & Wagner 2008). Significant benefits of group-living exist in striped mice, which are predicted to be higher than costs of group-living during the non-breeding season, leading to group-living. However, when the extra costs of reproductive competition arise during the breeding season, such as reproductive suppression and infanticide, the costs seem to be higher than the benefits, leading to solitary living if costs of dispersal (=benefits of philopatry) are low.
Dispersal and resulting solitary-living of striped mice can thus be explained as a tactic to avoid reproductive competition and, in the case of young adult philopatrics, to start independent breeding. While most of the individuals that dispersed were young philopatrics, we also observed breeding adults born the previous breeding season dispersing and becoming solitary, and there was no significant difference between breeders and philopatrics. Striped mice are socially flexible, i.e. individuals of both sexes can follow alternative reproductive tactics (Schradin et al. 2011). Male striped mice have the following tactics: 1) to remain as philopatric helpers in their natal group; 2) to disperse and become solitary roamers with defined home-ranges; or 3) to become group-living territorial breeders (Schradin et al. 2009). Female striped mice have the following options: 1) to remain as philopatric helpers in their natal group; 2) to disperse and breed singly; or 3) to breed communally (Schradin, Schneider & Lindholm 2010). When population density is high, being a territorial breeding male is the most successful tactic, but when population density is low and resources, such as females, are not clumped (i.e. females breed solitarily and not communally), being a roamer is the preferred tactic (Schradin and Lindholm 2011). Our results concur with previous correlative studies demonstrating that at the beginning of the breeding season, striped mice of both sexes that were born during the previous breeding season leave huddling groups and follow a solitary tactic, if vacant territories are available (Schradin, König & Pillay 2010).

Whereas several previous experimental studies demonstrated the importance of ecological constraints in maintaining group-living (Dickinson & McGowan 2005; Griesser et al. 2008; Jacquot and Solomon 2004), no experimental studies thus far tested the reasons for solitary-living. This is peculiar as reproductive competition within groups has often been used as a plausible explanation for why individuals disperse and become solitary (Emlen 1982a; 1997). In our study we were able to show that free-living striped mice leave communal groups and become solitary if vacant territories are provided experimentally, but they do so only during the breeding season. Population density alone could not explain this, and as our controls during the non-breeding season were performed both during the hot dry summer when food availability is low, and the moist cold winter, when food availability is high, neither temperature nor food per se is likely to explain our results (see also Schradin, König & Pillay 2010). Thus, the main difference between the breeding- and the non-breeding season is the presence or absence of reproductive competition, which is the most parsimonious explanation for the differences in sociality we found. Further, we found evidence for both sexes that striped mice were able to avoid reproductive competition by becoming solitary. This is to our knowledge so far the best experimental evidence that reproductive competition within groups is responsible for dispersal and can lead to solitary-living.

Acknowledgements

We wish to thank the manager and staff of the Goegap Nature Reserve for their support and the Department of Tourism, Environment and Conservation of the Northern Cape for research permits. We are also thankful to Steyn Jacobson, owner of the Farm Klein Goegap, for permitting us to conduct our experiments on his property. We are grateful to the research station manager C.H. Yuen, to J. Raynaud and G. Schmol as well as the many field assistants that contributed to the project. We are grateful to Y. Auclair, C. Bousquet, L. Hayes, A. K. Lindholm and M. B. Manser for their comments and N. Pillay.
for comments and assistance with the statistical analysis. The Swiss National Science Foundation (grant 3100A0-120194 to CS), the Swiss Academy of Natural Sciences and the Swiss South African Joint Research Programme provided the funding. The study obtained ethical clearance from the University of the Witwatersrand (AESC: 2007/38/04).

References


Figures

Fig. 1. Experimental design, with each polygon representing a group’s home-range. Each removal experiment consisted of two replicates of six groups each. Of these, two were removed (R1 and 2), two were monitored as experimental groups (E1 and 2) and two were used as control groups (C1 and 2). The white polygons separating the two replicates represent non-focal neighbouring groups, which were monitored only by trapping.

Fig. 2. During the breeding season, more mice from experimental groups became solitary than mice from control groups. During the non-breeding season, mice from experimental and control groups did not differ in their likelihood of becoming solitary. Mice were more likely to become solitary in the breeding season (time with reproductive competition) than during the non-breeding season. (p* <0.05, ** <0.01, n.s. = non significant).

Fig. 3. Hyperbolic regression curve of the relationship between population density and group-living striped mice of experimental groups during the breeding season (black circles, black line, N=8; p<0.001. The hyperbolic regression curve was only fitted to the data of experimental groups during the breeding season (i.e. the black line only runs through the black dots). Data for experimental groups during the non-breeding season (white circles) and for control groups during the breeding (black triangles) and the non-breeding season (white triangles) were non significant. During the non-breeding season, many data overlap, thus not all the 16 points are clearly visible.

Fig. 4. At time of dispersal, significantly more females that became solitary were reproductively mature than females that philopatric (p*** < 0.001).

Fig. 5. Significantly more solitary females reproduced during the breeding season than philopatric females (p** < 0.01).

Fig. 6. Percentage of males that were scrotal with fully descended tests and thus regarded as sexually mature. Left: at the time of dispersal, a significantly higher percentage of solitary males were scrotal than philopatric males (p*** < 0.001). Right: at the end of the breeding season a significantly higher percentage of solitary males were scrotal than philopatric males (p*** < 0.001). Philopatric males were not more likely to be scrotal at the end of the breeding season than at dispersal (p = n.s., not significant).
Fig. 1.

Control Groups

Experimental Groups

Removed Groups

Neighbouring Groups

Valley Walls

One Replicate
Fig. 2. Percentage of Mice that became solitary.

Breeding Season

Non-Breeding Season

** - n.s.

* - **
Fig. 3.

![Graph showing the relationship between population density and group-living striped mice percentage. The x-axis represents population density (striped mice/ha) ranging from 0 to 30. The y-axis represents group-living striped mice percentage ranging from 0 to 100. The graph includes data points for breeding season experiments, breeding season controls, non-breeding season experiments, and non-breeding season controls. The regression line indicates a positive correlation.](image-url)
Fig. 4.
Fig. 5.

**

Percentage of Females

At the End of the Breeding Season

Successful
Unsuccessful
Fig. 6.

![Graph showing percentage of males at dispersal and at the end of the breeding season.](image)

- At dispersal:
  - Philopatrics
  - Solitary

- At the end of the breeding season:
  - Philopatrics
  - Solitary

Legend:
- Mature
- Immature

Significance levels:
- n.s.
- ***