Header

UZH-Logo

Maintenance Infos

Scene-based spectral response function shape discernibility for the APEX imaging spectrometer


Brazile, J; Neville, R A; Staenz, K; Schläpfer, D; Sun, L; Itten, K I (2006). Scene-based spectral response function shape discernibility for the APEX imaging spectrometer. Geoscience and Remote Sensing Letters, 3(3):414-418.

Abstract

Scene-based spectrometer calibration is becoming increasingly interesting due to the decreasing cost of computing resources as compared with laboratory calibration costs. Three of the most important instrument parameters needed for deriving surface reflectance products are per-band bandwidths, i.e., full-width at half-maximum, band centers, and spectral response function (SRF) shape. Methods for scene-based bandwidth and band center retrieval based on curve matching in the spectral regions near well-known solar and atmospheric absorption features have been investigated with satisfying results. The goal of this work is to establish the feasibility of per-band SRF shape discernibility. To this end, at-sensor radiances in multiple application configurations have been modeled using Moderate-Resolution Atmospheric Transmission (MODTRAN) 4 configured for the currently being built Airborne Prism Experiment (APEX) imaging spectrometer in its unbinned configuration (i.e., optimized for spectral resolution). To establish SRF shape discernment feasibility, per-band MODTRAN 4 spectral “filter response function” files have been generated for five common theoretical shapes using APEX nominal bandwidth and band center specifications and are provided as MODTRAN 4 input for the instrument model. In several application configurations, the typically used Gaussian SRF is used as reference and compared with radiances resulting from hypothetical instruments based on the four other shapes to detect differences in selected spectral subsets or “windows” near well-known Fraunhofer features. A relative root-mean-square metric is used to show that discernment in some cases is directly feasible, and in others, feasible if noise reduction techniques (e.g., along-track averaging of homogeneous targets) are possible.

Abstract

Scene-based spectrometer calibration is becoming increasingly interesting due to the decreasing cost of computing resources as compared with laboratory calibration costs. Three of the most important instrument parameters needed for deriving surface reflectance products are per-band bandwidths, i.e., full-width at half-maximum, band centers, and spectral response function (SRF) shape. Methods for scene-based bandwidth and band center retrieval based on curve matching in the spectral regions near well-known solar and atmospheric absorption features have been investigated with satisfying results. The goal of this work is to establish the feasibility of per-band SRF shape discernibility. To this end, at-sensor radiances in multiple application configurations have been modeled using Moderate-Resolution Atmospheric Transmission (MODTRAN) 4 configured for the currently being built Airborne Prism Experiment (APEX) imaging spectrometer in its unbinned configuration (i.e., optimized for spectral resolution). To establish SRF shape discernment feasibility, per-band MODTRAN 4 spectral “filter response function” files have been generated for five common theoretical shapes using APEX nominal bandwidth and band center specifications and are provided as MODTRAN 4 input for the instrument model. In several application configurations, the typically used Gaussian SRF is used as reference and compared with radiances resulting from hypothetical instruments based on the four other shapes to detect differences in selected spectral subsets or “windows” near well-known Fraunhofer features. A relative root-mean-square metric is used to show that discernment in some cases is directly feasible, and in others, feasible if noise reduction techniques (e.g., along-track averaging of homogeneous targets) are possible.

Statistics

Citations

10 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 18 Jul 2012
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2006
Deposited On:18 Jul 2012 14:22
Last Modified:05 Apr 2016 15:46
Publisher:IEEE
ISSN:1545-598X
Publisher DOI:https://doi.org/10.1109/LGRS.2006.873873

Download

Preview Icon on Download
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 203kB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations