Header

UZH-Logo

Maintenance Infos

In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus


Schneider, Tanja; Senn, Maria Magdalena; Berger-Bächi, Brigitte; Tossi, Alessandro; Sahl, Hans-Georg; Wiedemann, Imke (2004). In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Molecular Microbiology, 53(2):675-685.

Abstract

Staphylococcus aureus peptidoglycan is cross-linked via a characteristic pentaglycine interpeptide bridge. Genetic analysis had identified three peptidyltransferases, FemA, FemB and FemX, to catalyse the formation of the interpeptide bridge, using glycyl t-RNA as Gly donor. To analyse the pentaglycine bridge formation in vitro, we purified the potential substrates for FemA, FemB and FemX, UDP-MurNAc-pentapeptide, lipid I and lipid II and the staphylococcal t-RNA pool, as well as His-tagged Gly-tRNA-synthetase and His-tagged FemA, FemB and FemX. We found that FemX used lipid II exclusively as acceptor for the first Gly residue. Addition of Gly 2,3 and of Gly 4,5 was catalysed by FemA and FemB, respectively, and both enzymes were specific for lipid II-Gly1 and lipid II-Gly3 as acceptors. None of the FemABX enzymes required the presence of one or two of the other Fem proteins for activity; rather, bridge formation was delayed in the in vitro system when all three enzymes were present. The in vitro assembly system described here will enable detailed analysis of late, membrane-associated steps of S. aureus peptidoglycan biosynthesis.

Abstract

Staphylococcus aureus peptidoglycan is cross-linked via a characteristic pentaglycine interpeptide bridge. Genetic analysis had identified three peptidyltransferases, FemA, FemB and FemX, to catalyse the formation of the interpeptide bridge, using glycyl t-RNA as Gly donor. To analyse the pentaglycine bridge formation in vitro, we purified the potential substrates for FemA, FemB and FemX, UDP-MurNAc-pentapeptide, lipid I and lipid II and the staphylococcal t-RNA pool, as well as His-tagged Gly-tRNA-synthetase and His-tagged FemA, FemB and FemX. We found that FemX used lipid II exclusively as acceptor for the first Gly residue. Addition of Gly 2,3 and of Gly 4,5 was catalysed by FemA and FemB, respectively, and both enzymes were specific for lipid II-Gly1 and lipid II-Gly3 as acceptors. None of the FemABX enzymes required the presence of one or two of the other Fem proteins for activity; rather, bridge formation was delayed in the in vitro system when all three enzymes were present. The in vitro assembly system described here will enable detailed analysis of late, membrane-associated steps of S. aureus peptidoglycan biosynthesis.

Statistics

Citations

Dimensions.ai Metrics
106 citations in Web of Science®
109 citations in Scopus®
147 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2004
Deposited On:10 Aug 2012 14:03
Last Modified:19 Feb 2018 20:38
Publisher:Wiley-Blackwell
ISSN:0950-382X
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/j.1365-2958.2004.04149.x
PubMed ID:15228543

Download

Full text not available from this repository.
View at publisher