Header

UZH-Logo

Maintenance Infos

Microarray-based analysis of the Staphylococcus aureus sigmaB regulon


Bischoff, Markus; Dunman, Paul; Kormanec, Jan; Macapagal, Daphne; Murphy, Ellen; Mounts, William; Berger-Bächi, Brigitte; Projan, Steven (2004). Microarray-based analysis of the Staphylococcus aureus sigmaB regulon. Journal of Bacteriology, 186(13):4085-4099.

Abstract

Microarray-based analysis of the transcriptional profiles of the genetically distinct Staphylococcus aureus strains COL, GP268, and Newman indicate that a total of 251 open reading frames (ORFs) are influenced by sigmaB activity. While sigmaB was found to positively control 198 genes by a factor of > or =2 in at least two of the three genetic lineages analyzed, 53 ORFs were repressed in the presence of sigmaB. Gene products that were found to be influenced by sigmaB are putatively involved in all manner of cellular processes, including cell envelope biosynthesis and turnover, intermediary metabolism, and signaling pathways. Most of the genes and/or operons identified as upregulated by sigmaB were preceded by a nucleotide sequence that resembled the sigmaB consensus promoter sequence of Bacillus subtilis. A conspicuous number of virulence-associated genes were identified as regulated by sigmaB activity, with many adhesins upregulated and prominently represented in this group, while transcription of various exoproteins and toxins were repressed. The data presented here suggest that the sigmaB of S. aureus controls a large regulon and is an important modulator of virulence gene expression that is likely to act conversely to RNAIII, the effector molecule of the agr locus. We propose that this alternative transcription factor may be of importance for the invading pathogen to fine-tune its virulence factor production in response to changing host environments.

Abstract

Microarray-based analysis of the transcriptional profiles of the genetically distinct Staphylococcus aureus strains COL, GP268, and Newman indicate that a total of 251 open reading frames (ORFs) are influenced by sigmaB activity. While sigmaB was found to positively control 198 genes by a factor of > or =2 in at least two of the three genetic lineages analyzed, 53 ORFs were repressed in the presence of sigmaB. Gene products that were found to be influenced by sigmaB are putatively involved in all manner of cellular processes, including cell envelope biosynthesis and turnover, intermediary metabolism, and signaling pathways. Most of the genes and/or operons identified as upregulated by sigmaB were preceded by a nucleotide sequence that resembled the sigmaB consensus promoter sequence of Bacillus subtilis. A conspicuous number of virulence-associated genes were identified as regulated by sigmaB activity, with many adhesins upregulated and prominently represented in this group, while transcription of various exoproteins and toxins were repressed. The data presented here suggest that the sigmaB of S. aureus controls a large regulon and is an important modulator of virulence gene expression that is likely to act conversely to RNAIII, the effector molecule of the agr locus. We propose that this alternative transcription factor may be of importance for the invading pathogen to fine-tune its virulence factor production in response to changing host environments.

Statistics

Citations

Dimensions.ai Metrics
234 citations in Web of Science®
238 citations in Scopus®
411 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2004
Deposited On:06 Aug 2012 15:33
Last Modified:19 Feb 2018 20:39
Publisher:American Society for Microbiology
ISSN:0021-9193
OA Status:Closed
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1128/JB.186.13.4085-4099.2004
PubMed ID:15205410

Download

Full text not available from this repository.
View at publisher

Get full-text in a library