Header

UZH-Logo

Maintenance Infos

Impaired egocentric memory and reduced somatosensory cortex size in temporal lobe epilepsy with hippocampal sclerosis


Weniger, Godehard; Ruhleder, Mirjana; Lange, Claudia; Irle, Eva (2012). Impaired egocentric memory and reduced somatosensory cortex size in temporal lobe epilepsy with hippocampal sclerosis. Behavioural Brain Research, 227(1):116-124.

Abstract

Recent research indicates that longstanding temporal lobe epilepsy (TLE) is associated with extratemporal, i.e. parietal cortex damage. We investigated egocentric and allocentric memory by use of first-person large-scale virtual reality environments in patients with TLE. We expected that TLE patients with parietal cortex damage were impaired in the egocentric memory task. Twenty-two TLE patients with hippocampal sclerosis (HS) and 22 TLE patients without HS were compared with 42 healthy matched controls on two virtual reality tasks affording to learn a virtual park (allocentric memory) and a virtual maze (egocentric memory). Participants further received a neuropsychological investigation and MRI volumetry at the time of the assessment. When compared with controls, TLE patients with HS had significantly reduced size of the ipsilateral and contralateral somatosensory cortex (postcentral gyrus). When compared with controls or TLE patients without HS, TLE patients with HS were severely impaired learning the virtual maze. Considering all participants, smaller volumes of the left-sided postcentral gyrus were related to worse performance on the virtual maze. It is concluded that the paradigm of egocentric navigation and learning in first-person large-scale virtual environments may be a suitable tool to indicate significant extratemporal damage in individuals with TLE.

Abstract

Recent research indicates that longstanding temporal lobe epilepsy (TLE) is associated with extratemporal, i.e. parietal cortex damage. We investigated egocentric and allocentric memory by use of first-person large-scale virtual reality environments in patients with TLE. We expected that TLE patients with parietal cortex damage were impaired in the egocentric memory task. Twenty-two TLE patients with hippocampal sclerosis (HS) and 22 TLE patients without HS were compared with 42 healthy matched controls on two virtual reality tasks affording to learn a virtual park (allocentric memory) and a virtual maze (egocentric memory). Participants further received a neuropsychological investigation and MRI volumetry at the time of the assessment. When compared with controls, TLE patients with HS had significantly reduced size of the ipsilateral and contralateral somatosensory cortex (postcentral gyrus). When compared with controls or TLE patients without HS, TLE patients with HS were severely impaired learning the virtual maze. Considering all participants, smaller volumes of the left-sided postcentral gyrus were related to worse performance on the virtual maze. It is concluded that the paradigm of egocentric navigation and learning in first-person large-scale virtual environments may be a suitable tool to indicate significant extratemporal damage in individuals with TLE.

Statistics

Citations

14 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 30 Apr 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Clinical and Social Psychiatry Zurich West (former)
Dewey Decimal Classification:610 Medicine & health
Date:2012
Deposited On:30 Apr 2012 12:57
Last Modified:07 Dec 2017 13:55
Publisher:Elsevier
ISSN:0166-4328
Publisher DOI:https://doi.org/10.1016/j.bbr.2011.10.043
PubMed ID:22085881

Download