Header

UZH-Logo

Maintenance Infos

Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts


Dijkman, Petra E; Driessen-Mol, Anita; Frese, Laura; Hoerstrup, Simon P; Baaijens, Frank P T (2012). Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials, 33(18):4545-4554.

Abstract

Decellularized xenogenic or allogenic heart valves have been used as starter matrix for tissue-engineering of valve replacements with (pre-)clinical promising results. However, xenografts are associated with the risk of immunogenic reactions or disease transmission and availability of homografts is limited. Alternatively, biodegradable synthetic materials have been used to successfully create tissue-engineered heart valves (TEHV). However, such TEHV are associated with substantial technological and logistical complexity and have not yet entered clinical use. Here, decellularized TEHV, based on biodegradable synthetic materials and homologous cells, are introduced as an alternative starter matrix for guided tissue regeneration. Decellularization of TEHV did not alter the collagen structure or tissue strength and favored valve performance when compared to their cell-populated counterparts. Storage of the decellularized TEHV up to 18 months did not alter valve tissue properties. Reseeding the decellularized valves with mesenchymal stem cells was demonstrated feasible with minimal damage to the reseeded valve when trans-apical valve delivery was simulated. In conclusion, decellularization of in-vitro grown TEHV provides largely available off-the-shelf homologous scaffolds suitable for reseeding with autologous cells and trans-apical valve delivery.

Abstract

Decellularized xenogenic or allogenic heart valves have been used as starter matrix for tissue-engineering of valve replacements with (pre-)clinical promising results. However, xenografts are associated with the risk of immunogenic reactions or disease transmission and availability of homografts is limited. Alternatively, biodegradable synthetic materials have been used to successfully create tissue-engineered heart valves (TEHV). However, such TEHV are associated with substantial technological and logistical complexity and have not yet entered clinical use. Here, decellularized TEHV, based on biodegradable synthetic materials and homologous cells, are introduced as an alternative starter matrix for guided tissue regeneration. Decellularization of TEHV did not alter the collagen structure or tissue strength and favored valve performance when compared to their cell-populated counterparts. Storage of the decellularized TEHV up to 18 months did not alter valve tissue properties. Reseeding the decellularized valves with mesenchymal stem cells was demonstrated feasible with minimal damage to the reseeded valve when trans-apical valve delivery was simulated. In conclusion, decellularization of in-vitro grown TEHV provides largely available off-the-shelf homologous scaffolds suitable for reseeding with autologous cells and trans-apical valve delivery.

Statistics

Citations

62 citations in Web of Science®
68 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

257 downloads since deposited on 30 Apr 2012
35 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiovascular Surgery
04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:30 Apr 2012 12:28
Last Modified:15 Dec 2016 14:48
Publisher:Elsevier
ISSN:0142-9612
Publisher DOI:https://doi.org/10.1016/j.biomaterials.2012.03.015
PubMed ID:22465337

Download

Preview Icon on Download
Preview
Content: Accepted Version
Language: English
Filetype: PDF
Size: 618kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations