Header

UZH-Logo

Maintenance Infos

Environmental warming alters food-web structure and ecosystem function - Zurich Open Repository and Archive


Petchey, Owen L; McPhearson, P Timon; Casey, Timothy M; Morin, Peter J (1999). Environmental warming alters food-web structure and ecosystem function. Nature, 402(6757):69-72.

Abstract

We know little about how ecosystems of different complexity will respond to global warming(1-5). Microcosms permit experimental control over species composition and rates of environmental change. Here we show using microcosm experiments that extinction risk in warming environments depends on trophic position but remains unaffected by biodiversity. Warmed communities disproportionately lose top predators and herbivores, and become increasingly dominated by autotrophs and bacterivores. Changes in the relative distribution of organisms among trophically defined functional groups lead to differences in ecosystem function beyond those expected from temperature-dependent physiological rates. Diverse communities retain more species than depauperate ones, as predicted by the insurance hypothesis, which suggests that high biodiversity buffers against the effects of environmental variation because tolerant species are more likely to be found(6,7). Studies of single trophic levels clearly show that warming can affect the distribution and abundance of species(2,4,5), but complex responses generated in entire food webs greatly complicate inferences based on single functional groups.

Abstract

We know little about how ecosystems of different complexity will respond to global warming(1-5). Microcosms permit experimental control over species composition and rates of environmental change. Here we show using microcosm experiments that extinction risk in warming environments depends on trophic position but remains unaffected by biodiversity. Warmed communities disproportionately lose top predators and herbivores, and become increasingly dominated by autotrophs and bacterivores. Changes in the relative distribution of organisms among trophically defined functional groups lead to differences in ecosystem function beyond those expected from temperature-dependent physiological rates. Diverse communities retain more species than depauperate ones, as predicted by the insurance hypothesis, which suggests that high biodiversity buffers against the effects of environmental variation because tolerant species are more likely to be found(6,7). Studies of single trophic levels clearly show that warming can affect the distribution and abundance of species(2,4,5), but complex responses generated in entire food webs greatly complicate inferences based on single functional groups.

Citations

393 citations in Web of Science®
414 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 10 Jul 2012
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:1999
Deposited On:10 Jul 2012 12:54
Last Modified:05 Apr 2016 15:53
Publisher:Nature Publishing Group
ISSN:0028-0836
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/47023

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 163kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations