Studies on the synthesis and some reactions of (S)-proline hydrazides

Mloston, Grzegorz; Pieczonka, Adam M; Wroblewska, Aneta; Linden, Anthony; Heimgartner, Heinz

Abstract: A convenient synthesis of (S)-proline hydrazide 2a via the reaction of ethyl (S)-N-benzylproline with hydrazine hydrate and subsequent deprotection of (S)-N-benzyl proline hydrazide 5 is described. The latter, in methanolic solution, reacted with aromatic aldehydes as well as with cycloaliphatic ketones at room temperature to give the corresponding hydrazones of type 7 in good yields. The structure of the product with furan-2-carbaldehyde 7b, proving the (E)-configuration of the hydrazone, was established by X-ray crystallography. In the case of the unprotected (S)-proline hydrazide 2a, the analogous reaction with aromatic aldehydes led either to the expected hydrazones 7 or the 1H-pyrrolo[1,2-c]imidazol-1-one derivatives 8, depending on the reaction conditions. The latter were formed via a secondary cyclocondensation of the initially formed 7 with a second molecule of the aldehyde. Whereas the reaction of (S)-Nbenzyl proline hydrazide 5 with butyl isocyanate and isothiocyanate gave the corresponding semicarbazide and thiosemicarbazide, respectively, of type 9, the unprotected (S)-proline hydrazide 2a yielded the 1:2 adducts 10. Thiosemicarbazide 9b underwent cyclization reactions under basic (NaOH) and acidic (H2SO4) conditions to yield (S)-prolinyl-substituted 1,2,4-triazole-3-thione 11 and 1,3,4-thiadiazole-2-amine 12, respectively.

DOI: https://doi.org/10.1016/j.tetasy.2012.05.010

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-63509
Accepted Version

Originally published at:
DOI: https://doi.org/10.1016/j.tetasy.2012.05.010
Studies on the synthesis and some reactions of (S)-proline hydrazides

Grzegorz Młoston a,*, Adam M. Pieczonka a, Aneta Wróblewska a, Anthony Linden b, Heinz Heimgartner b

a University of Łódź, Department of Organic and Applied Chemistry, Tamka 12, PL-91-403 Łódź, Poland
E-mail: gmloston@uni.lodz.pl

b Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
Abstract

A convenient synthesis of (S)-proline hydrazide 2a via the reaction of ethyl (S)-N-benzylprolinate with hydrazine hydrate and subsequent deprotection of (S)-N-benzyl proline hydrazide 5 is described. The latter, in methanolic solution, reacted with aromatic aldehydes as well as with cycloaliphatic ketones at room temperature to give the corresponding hydrazones of type 7 in good yields. The structure of the product with furan carbaldehyde 7b, proving the (E)-configuration of the hydrazone, was established by X-ray crystallography. In the case of the unprotected (S)-proline hydrazide 2a, the analogous reaction with aromatic aldehydes led to the expected hydrazones 7 or the 1H-pyrrolo[1,2-c]imidazol-1-one derivatives 8, depending on the reaction conditions. The latter is formed via a secondary cyclocondensation of the initially formed 7 with a second molecule of the aldehyde. Whereas the reaction of (S)-N-benzyl proline hydrazide 5 with butyl isocyanate and isothiocyanate gave the corresponding semicarbazide and thiosemicarbazide, respectively, of type 9, the unprotected (S)-proline hydrazide 2a yielded the 1:2 adducts 10. Thiosemicarbazide 9b underwent cyclization reactions under basic (NaOH) and acidic (H2SO4) conditions to yield (S)-prolinyl-substituted 1,2,4-triazole-3-thione 11 and 1,3,4-thiadiazole-2-amine 12, respectively.
1. Introduction

It is well documented that enantiopure (S)-proline 1a (R = H) and its derivatives belong to privileged compounds widely applied in the field of asymmetric synthesis and organocatalysis.\(^2\) On the other hand, carbohydrazides form an important class of building blocks for the preparation of diverse N-heterocycles\(^3\) with practical applications as agrochemicals and pharmaceuticals.\(^4\) Moreover, a variety of hydrazones derived from hydrazides are known for their biological activities.\(^5\) Finally, also some hydrazides are used as pharmaceuticals, and isoniazid (isonicotinohydrazide), synthesized for the first time at the beginning of the 20th century, is the best known example of this class of compounds.\(^6\)

Whereas proline amides and thioamides are rather well known and have been explored successfully as catalyst and ligands,\(^7\) the related proline hydrazides 2 are less known. To the best of our knowledge, hydrazides of the non-protected (S)-proline are described only scarcely. The syntheses of (S)-pyroline hydrazide 2a (R\(^1\) = R\(^2\) = H) by using anhydrous (absolute) hydrazine, as well as some of its hydrazones 3 (Scheme 1), were published in 1993.\(^8\) Interestingly, in another paper, the authors reported the formation of bicyclic 1:2 products, i.e., 2,3-disubstituted 1,3-diaza[3.3.0]octan-4-ones.\(^8\) Treatment of (S)-proline with hydrazine hydrate in large excess at elevated temperature led to 4-amino-3,5-bis(2-pyrrolidine)-1,2,4-triazoles,\(^9\) and proline hydrazide 2a was proposed as key intermediate in the reaction. A biologically active hydrazone derived from proline hydrazide was prepared by using 2-chloroacetophenone.\(^10\) In a very recent report, proline hydrazide prepared from methyl (S)-prolinate hydrochloride and excess hydrazine hydrate in methanolic solution was isolated and fully characterized.\(^11\) The formed hydrazine hydrochloride was removed from the crude product via precipitation from methanol. In a recent study, the preparation of N’-mono- and N’,N’-disubstituted (S)-proline hydrazides and their application as catalysts for asymmetric aldol reactions is reported.\(^12\)

Due to our current interest in the synthesis and applications of heterocyclic carbohydrazides\(^13\) as well as asymmetric synthesis,\(^14\) we report now a convenient and efficient protocol for the preparation of (S)-proline hydrazide 2a, which is a promising reagent for further, diverse applications.
2. Results and discussion

A typical procedure for the synthesis of acid hydrazides is the treatment of the corresponding esters with hydrazine hydrate. Using this method, ethyl (S)-N-benzyl proline 4 can easily be transformed into (S)-N-benzyl proline hydrazide 5 in high yield (Scheme 2, see ref.16).

In our hands, the reaction of methyl (S)-prolinate 1b with a commercial aqueous solution of hydrazine (80%), carried out at room temperature, resulted in its hydrolysis, and proline 1a was isolated as the sole product. Following the protocol reported in ref.11, we obtained 2a contaminated with hydrazine hydrochloride, which could not be removed completely by repeated treatment with methanol. On the other hand, when the aqueous hydrazine solution was distilled over KOH pellets and then used for the reaction with 1b, a crystalline product was obtained, which was identified as the well known diketopiperazine derivative 6 (Scheme 3).12 In another experiment, the sequential treatment of 1a with thionyl chloride and hydrazine hydrate also led to 6. Most likely, in both cases, hydrazine hydrate only acted as a base.
Having in hand the N-benzylated hydrazide 5, the non-protected 2a was prepared by standard hydrogenolysis over palladium on charcoal. Alternatively, substrate 5 was converted into 2a using ammonium formate in boiling methanolic solution, in the presence of Pd/C as a deprotecting reagent. The physicochemical and spectroscopic properties of 2a fitted well with the data reported in the literature. Thus, the method presented in Scheme 2 opens a convenient access to pure 2a on a multigram scale.

In the second part of the study, selected reactions with hydrazides 2a and 5 were performed using aldehydes, ketones, butyl isocyanate, and butyl isothiocyanate. The N-benzylated proline hydrazide 5 reacted smoothly with aldehydes at room temperature yielding the expected hydrazones 7 as a single isomer in each case (Scheme 4). The 1H-NMR spectra showed that a single isomer is also present in solution. In the case of the non-protected proline hydrazide 2a, the reaction course was dependent on the applied protocol and a test reaction was carried out with 4-methoxybenzaldehyde. Whereas slow addition of the aldehyde to a stirred solution of 2a at room temperature led to the expected hydrazone 7e, the reversed addition of both reagents (2a was added in small portions to a stirred solution of excess aldehyde) resulted in exclusive formation of the corresponding 1:2 product of type 8 in a diastereoselective manner (Scheme 5). Surprisingly, in two earlier publications, both types of products, i.e. hydrazones 7 and 1:2 products 8, were obtained using the same protocol based on addition of the corresponding aldehyde in one portion to the solution of 2a at room temperature. In our hands, upon application of this protocol, formation of both products in a ratio of ca. 1:1 was observed.

It is worth mentioning that, in contrast to hydrazones 7a–d, the non-protected analogues 7e–i exist in solution as mixtures of two stereoisomers or conformers (1H-NMR evidence). On the basis of the present data, it is not possible to formulate a convincing explanation of this phenomenon.
Similarly to aromatic aldehydes, reactions of 2a and 5 with less reactive cyclohexanone and adamantane also occurred smoothly at room temperature in MeOH solutions. In all cases the expected hydrazones were obtained in high yields as crystalline materials.

Scheme 4

Hydrazone 7b was obtained as a crystalline material suitable for an X-ray crystal structure analysis (Figure 1). The compound in the crystal is enantiomerically pure and the absolute configuration of the molecule has been determined independently by the diffraction experiment. The molecule has the expected S-configuration and the C=N bond is (E)-configured. The amide group forms an intramolecular hydrogen bond with the ring N-atom to give a loop with a graph set motif of S(5).
Reactions of butyl isocyanate and butyl isothiocyanate with 5 occur smoothly in boiling ethanol yielding the desired semicarbazide 9a and thiosemicarbazide 9b, respectively (Scheme 5). On the other hand, treatment of the non-protected 2a with 1 mol-equivalent of butyl isocyanate and butyl isothiocyanate, respectively, resulted in the formation of the 1:2 adducts 10a and 10b, i.e., the products of a two-fold addition, which were obtained along with unconverted starting material 2a. In another experiment with 2 mol-equivalents of the heterocumulene, the conversion of 2a to the corresponding compounds 10 was complete. These results show that these additions occur non-selectively and, remarkably, no 1:1 adduct was obtained regardless of the applied reaction conditions.

Scheme 5

Figure 1. ORTEP plot17 of the molecular structure of 7b (arbitrary numbering of the atoms; 50% probability ellipsoids)
It is well established that thiosemicarbazides derived from carbohydrazides are versatile starting materials for the preparation of diverse heterocycles.13,15 Thus, heating of 9b in aqueous NaOH gave the 1,2,4-triazole-3-thione 11, whereas the reaction in H\textsubscript{2}SO\textsubscript{4} at room temperature yielded the 1,3,4-thiadiazol-2-amine derivative 12 (Scheme 6). Further studies aimed at the exploration of proline hydrazides for the preparation of enantiomerically pure bis-heterocyclic products are in progress.

\textit{Scheme 6}

\begin{center}
\begin{tikzpicture}
\node (11) at (0,0) {\includegraphics[width=0.5\textwidth]{scheme6.png}};
\end{tikzpicture}
\end{center}

3. Conclusions

The present study shows that non-protected (S)-proline hydrazide 2a can be prepared conveniently by using aqueous hydrazine and N-benzyl prolinate with subsequent deprotection of the N-atom. Both optically active (S)-proline derived hydrazides 2a and 5 react with aldehydes and cyclic ketones yielding the corresponding hydrazones 7. However, in the case of the reaction with aldehydes, depending on the reaction conditions, a secondary process leading to a product of type 8 competes with the formation of the corresponding hydrazone. The formation of 8 is rationalized by the cyclocondensation of the initially formed hydrazone 7 with a second molecule of the aldehyde. Furthermore, the reactions of the N-benzylated hydrazide 5 with butyl isocyanate and isothiocyanate afforded semicarbazides and thiosemicarbazides, respectively, which are attractive building blocks for the preparation of chiral bis-heterocycles such as 1,3,4-thiadiazoles and 1,2,4-triazol-2-thiones. These compounds and other products derived from 2a and 5 are of interest as promising organocatalysts and ligands for asymmetric synthesis. Additions of butyl isocyanate and butyl isothiocyanate with the non-protected 2a occur at both N-atoms in a non-selective manner.
4. Experimental

4.1. General

Melting points were determined in a capillary using a Melt-Temp. II apparatus (Aldrich) or STUART SMP30 and are uncorrected. IR Spectra were recorded on a NEXUS FT-IR spectrophotometer in KBr; absorptions (v) in cm\(^{-1}\). \(^1\)H and \(^{13}\)C\(^{\{1\}H}\) NMR spectra were measured on a Bruker Avance III instrument (600 and 150 MHz, resp.) using solvent signals as reference. Chemical shifts (\(\delta\)) are given in ppm and coupling constants \(J\) in Hz. Assignments of signals in \(^{13}\)C NMR spectra were made on the basis of HMQC experiments. HR-MS: Bruker Esquire LC spectrometers. Optical rotations were determined on a PERKIN-ELMER 241 MC polarimeter for \(\lambda = 589\) nm.

4.2. Starting Materials

All solvents and reagents are commercially available and were used as received. Ethyl (S)-N-benzylprolinate 4 and methyl (S)-prolinate 1b were prepared following a known protocol based on the treatment of the corresponding amino acid, dissolved in ethanol or methanol, with thionyl chloride.\(^{11}\)

4.3. Synthesis of (S)-proline hydrazide 2a

Procedure A: To a magnetically stirred solution of (S)-N-benzylproline hydrazide 5 (10 mmol) in MeOH (5 ml) was added 10% Pd/C (300 mg). Then, H\(_2\) gas was bubbled through the solution for 24 h; the progress of the reaction was followed by TLC (SiO\(_2\), MeOH/CH\(_2\)Cl\(_2\) 1:4). After the starting hydrazide was consumed, Pd/C was filtered and the resulting solution was concentrated under reduced pressure. The obtained highly pure product 2a was analyzed without further purification. Yield: 1.161 g (90%).

Procedure B: To a magnetically stirred solution of (S)-N-benzylproline hydrazide 5 (5 mmol) in MeOH (10 ml) was added 10% Pd/C (165 mg) and HCOONH\(_4\) (5 eq). The mixture was heated to reflux for 1 h. After cooling to r.t., Pd/C was filtered and the resulting solution was concentrated under reduced pressure. The obtained highly pure product 2a was analyzed without further purification. Yield: 0.121 g (94%). IR (film): v 3328s (HN), 2976m, 1659vs (C=O), 1541m, 1410m. \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 8.50
(br. s, HN); 3.74–3.71 (m, CH); 2.95–2.80 (m, 2H); 2.61 (br. s, NH₂); 2.10–2.03 (m, 1H); 1.87–1.82 (m, 1H); 1.70–1.60 (m, 2H). ¹³C NMR (CDCl₃): δ 175.1 (C=O); 59.9 (CH₃); 47.2, 30.6, 26.1 (3 CH₃). HR-ESI-MS: 130.0974 (calcd 130.0975 for C₅H₁₂N₃O, [M+1]⁺). [α]D²⁵ = –38 (c 1.00, MeOH).

4.4. Synthesis of (S)-N-benzylproline hydrazide 5

To a solution of freshly prepared (S)-N-benzylproline ethyl ester 4 (10 mmol) in MeOH (5 ml) was added NH₂NH₂·H₂O (20 mmol). The mixture was stirred for 16 h at r.t., and the solvent was evaporated under vacuum. The obtained highly pure product 5 was analyzed without further purification. Yield: 2.102 g (96%). Pale yellow oil. IR (film): ν 3316s (HN), 2969s, 1663vs (C=O), 1496s, 701m. ¹H NMR (CDCl₃): δ 8.26 (s, HN); 7.32–7.23 (m, 5 arom. H); 3.81, 3.51 (AB, JAB = 13.2, CH₂Ph); 3.28–3.26 (m, CH); 3.02–2.99 (m, 1H); 2.36–2.32 (m, 1H); 2.22–2.18 (m, 1H); 1.89–1.68 (m, 3H). ¹³C NMR (CDCl₃): δ 174.7 (C=O); 138.4 (1 arom. C); 128.7, 128.5, 127.3 (5 arom. CH); 66.5 (CH); 60.0 (CH₂Ph); 54.0, 30.6, 24.1 (3 CH₂). HR-ESI-MS: 220.1443 (calcd 220.1444 for C₁₂H₁₈N₃O, [M+1]⁺). [α]D²⁵ = –70 (c 1.00, MeOH).

4.5. Synthesis of diketopiperazine 6

Procedure A: To a solution of freshly prepared (S)-proline methyl ester 1b (10 mmol) in MeOH (5 ml), was added NH₂NH₂·H₂O (20 mmol) distilled over KOH pellets. The mixture was stirred for 16 h at r.t., and the solvent was evaporated under vacuum to give 6. Yield: 1.223 g (63%). Colorless crystals. Mp 140–142 °C; lit.¹²b, mp 144–145 °C.

Procedure B: A mixture of (S)-proline 1a (10 mmol) and thionyl chloride (2.4 ml) was heated to reflux for 30 min. After cooling to r.t., an excess of NH₂NH₂·H₂O (1.18 ml) distilled over KOH pellets was added and the mixture heated to reflux for 1 h. Then, water was added and the aqueous layer was extracted with CHCl₃, the organic layer was dried over Na₂SO₄, and the solvent was evaporated. The residue was passed through a silica gel plug to give 6. Yield: 0.524 g (27%). Colorless crystals. Mp 139–141 °C.

4.6. General procedure for the synthesis of hydrazones 7a–d
To a stirred solution of a hydrazide 5 (1 mmol) in MeOH (5 ml) at 20 °C, an equimolar quantity of the carbonyl component was added slowly. The mixture was stirred for 16 h at r.t., the solution was concentrated, the resulting solid was treated with Et₂O, filtered, and crystallized from an appropriate solvent.

4.6.1. (2S)-1-Benzyl-N-[(E)-(4-methoxyphenyl)methylidene]pyrrolidine-2-carbohydrazide 7a

Yield: 0.250 g (74%). Colorless crystals. Mp 94–96 °C (EtOH). IR (KBr): ν 3255s (HN), 2973m, 1676vs (C=O), 1603s, 1506m, 1255m. ¹H NMR (CDCl₃): δ 10.21 (br. s, HN); 7.99 (s, HC=N); 7.71, 6.93 (AA’BB’, J_AB = 8.3, 4 arom. H); 7.39–7.28 (m, 5 arom. H); 3.93, 3.65 (AB, J_AB = 13.2, CH₂Ph); 3.86 (s, MeO); 3.45–3.42 (m, CH); 3.16–3.14 (m, 1H); 2.52–2.47 (m, 1H); 2.35–2.31 (m, 1H); 2.10–1.77 (m, 3H). ¹³C NMR (CDCl₃): δ 170.4 (C=O); 148.1 (C=N); 138.4, 130.1, 126.3 (3 arom C); 129.3, 128.7, 128.6, 127.5, 114.1 (9 arom. CH); 67.1 (CH); 60.1 (CH₂Ph); 55.4 (MeO); 54.3, 30.8, 24.3 (3 CH₂). HR-ESI-MS: 338.1865 (calcd 338.1863 for C₂₀H₂₄N₃O₂, [M+1]+). [α]D²⁵ = +104 (c 1.00, MeOH).

4.6.2. (2S)-1-Benzyl-N-[(E)-2-furylmethylidene]pyrrolidine-2-carbohydrazide 7b

Yield: 0.232 g (69%). Colorless crystals. Mp 135–136 °C (EtOH). IR (KBr): ν 3250s (HN), 2977m, 1679vs (C=O), 1515m, 1470m, 1346m. ¹H NMR (CDCl₃): δ 10.22 (br. s, HN); 8.30 (s, HC=N); 7.50, 6.80, 6.47 (3d, J = 3.6, 3 furyl H); 7.35–7.25 (m, 5 arom. H); 3.89, 3.61 (AB, J_AB = 13.2, CH₂Ph); 3.40–3.37 (m, CH); 3.11–3.08 (m, 1H); 2.47–2.43 (m, 1H); 2.30–2.27 (m, 1H); 2.04–1.76 (m, 3H). ¹³C NMR (CDCl₃): δ 170.8 (C=O); 149.4, 138.2 (2 arom. C); 138.8 (C=N); 144.6, 128.7, 128.6, 127.6, 113.1, 111.9 (8 arom. CH); 67.1 (CH); 60.1 (CH₂Ph); 54.2, 30.8, 24.3 (3 CH₂). HR-ESI-MS: 298.1550 (calcd 298.1550 for C₁₇H₂₀N₃O₂, [M+1]+). [α]D²⁵ = +121 (c 1.00, MeOH).

4.6.3. (2S)-1-Benzyl-N-(cyclohexylidene)pyrrolidine-2-carbohydrazide 7c

Yield: 0.269 g (81%). Colorless crystals. Mp 85–87 °C (EtOH). IR (KBr): ν 3198s (HN), 2933s, 1678vs (C=O), 1550m, 1209m, 741m. ¹H NMR (CDCl₃): δ 10.15 (br. s, HN); 7.33–7.27 (m, 5 arom. H); 3.91, 3.56 (AB, J_AB = 13.2, CH₂Ph); 3.41–3.39 (m, CH); 3.12–3.09 (m, 1 proline H); 2.44–1.62 (m, 5 proline H, 10 cyclohexyl H). ¹³C
NMR (CDCl₃): δ 170.2 (C=O); 161.0 (C=N); 138.6 (1 arom C); 128.7, 128.6, 127.4 (5 arom. CH); 67.4 (CH); 60.2 (CH₂Ph); 54.3, 35.5, 30.8, 25.8, 26.7, 25.9, 25.6, 24.3 (3 proline CH₂, 5 cyclohexyl CH₂). HR-ESI-MS: 300.2070 (calcd 300.2070 for C₁₈H₂₆N₃O, [M+1]+). [α]D²⁵ = –102 (c 1.00, MeOH).

4.6.4. (2S)-N-(2-Adamantylidene)-1-benzylpyrrolidine-2-carbohydrazide 7d
Yield: 0.263 g (75%). Colorless crystals. Mp 169–171 °C (EtOH). IR (KBr): ν 3203s (HN), 2912s, 1666vs (C=O), 1553m, 1210m, 741m. ¹H NMR (CDCl₃): δ 10.17 (br. s, HN); 7.33–7.24 (m, 5 arom. H); 3.92, 3.53 (AB, JAB = 13.2, CH₂Ph); 3.42–3.39 (m, CH); 3.10–3.08 (m, 1 proline H); 2.92, 2.82 (2 br. s, 2 adamantyl CH); 2.42–2.28 (m, 2 proline H); 2.05–1.73 (m, 3 proline H, 12 adamantyl H). ¹³C NMR (CDCl₃): δ 170.3 (C=O); 167.4 (C=N); 138.7 (1 arom. C); 128.6, 128.4, 127.4 (5 arom. CH); 67.5 (CH); 60.2 (CH₂Ph); 54.3, 39.5, 39.0, 37.8, 36.3, 31.5, 30.7, 27.8, 24.4 (3 proline CH₂, 9 adamantyl C). HR-ESI-MS: 352.2382 (calcd 352.2383 for C₂₂H₃₀N₃O, [M+1]+). [α]D²⁵ = –74 (c 1.00, CHCl₃).

4.7. General procedure for the synthesis of hydrazones 7e–i
To a stirred solution of a hydrazide 5 (1 mmol) in MeOH (5 ml) at 20 °C, an equimolar quantity of the carbonyl component in MeOH (10 ml) was added during 4 h. The mixture was stirred for 16 h at r.t., the solution was concentrated, the resulting solid was treated with Et₂O and filtered.

4.7.1. (2S)-N-[(E)-(4-Methoxyphenyl)methylidene]pyrrolidine-2-carbohydrazide 7e
Yield: 0.188 g (76%). Colorless crystals. Mp 85–86 °C (Et₂O). IR (KBr): ν 3257s (HN), 2965m, 1686vs (C=O), 1607s, 1513m, 1253s. ¹H NMR (CDCl₃): major isomer: δ 8.12 (s, HC=N); 7.35, 6.70 (AA'BB', JAB = 8.3, 4 arom. H); 4.93–4.91 (m, CH); 3.76 (s, MeO); 3.70–3.61 (m, 2 proline H); 2.49–2.08 (m, 4 proline H); minor isomer: δ 8.18 (s, HC=N); 7.67 6.88 (AA'BB', JAB = 8.3, 4 arom. H); 4.17–4.13 (m, CH); 3.82 (s, MeO); 3.20–3.06 (m, 2 proline H); 2.39–1.80 (m, 4 proline H). ¹³C NMR (CDCl₃): major isomer: δ 161.3 (C=O); 146.7 (C=N); 142.4, 126.2, (2 arom. C); 129.3 114.0 (4 arom. CH); 58.6 (CH); 55.2 (MeO); 46.6, 30.7, 24.6 (3 CH₂); minor isomer: δ 161.7 (C=O); 148.9 (C=N); 142.4, 126.2 (2 arom. C); 128.8, 114.1 (4 arom. CH); 59.9
4.7.2. (2S)-N-[(E)-(4-Nitrophenyl)methylidene]pyrrolidine-2-carbohydrazide 7f

Yield: 0.233 g (89%). Yellow solid. Mp 264–268 °C (Et2O). IR (KBr): ν 3074m, 2965m, 1694vs (C=O), 1518m, 1342s. 1H NMR ((D6)DMSO): major isomer: δ 8.21 (s, HC=N); 8.28, 8.00 (AA′BB′, JAB = 8.6, 4 arom. H); 4.86–4.83 (m, CH); 3.37–3.17 (m, 2 proline H); 2.55–1.91 (m, 4 proline H); minor isomer: δ 8.44 (s, HC=N); 8.30, 7.97 (AA′BB′, JAB = 8.6, 4 arom. H); 4.21–4.19 (m, CH); 3.17–3.07 (m, 2 proline H); 2.34–1.91 (m, 4 proline H). 13C NMR ((D6)DMSO): major isomer: δ 170.7, (C=O); 143.7 (C=N); 148.5, 140.4 (2 arom. C); 128.6, 124.5 (4 arom. CH); 58.4 (CH); 46.2, 29.3, 24.1 (3 CH2); minor isomer: δ 166.4 (C=O); 146.5 (C=N); 148.5, 140.6 (2 arom. C); 128.6, 124.4 (4 arom. CH); 59.0 (CH); 46.1, 30.0, 24.3 (3 CH2). HR-ESI-MS: 263.1137 (calcd 263.1139 for C12H15N4O3, [M+1]+). [α]D25 = – 57 (c 1.00, MeOH).

4.7.3. (2S)-N-[(E)-2-Furylmethylidene]pyrrolidine-2-carbohydrazide 7g

Yield: 0.164 g (79%). Colorless crystals. Mp 79–81 °C (Et2O). IR (KBr): ν 3112s (HN), 2977m, 1690vs (C=O), 1625m, 1231m. 1H NMR (CDCl3): major isomer: δ 8.13 (s, HC=N); 7.34, 6.54, 6.33 (3d, J = 3.7, 3 furyl H); 4.92–4.89, (m, CH); 3.70–3.46 (m, 2 proline H); 2.25–2.09 (m, 4 proline H); minor isomer: δ 8.31 (s, HC=N); 7.48, 6.68, 6.42 (3d, J = 3.7, 3 furyl H); 4.62–4.59 (m, CH); 3.57–3.36 (m, 2 proline H); 2.55–1.90 (m, 4 proline H). 13C NMR (CDCl3): major isomer: δ 170.3 (C=O); 148.9 (1 arom. C); 144.4, 113.9, 111.7 (3 furyl CH); 136.5 (C=N); 58.8 (CH); 46.4, 29.5, 24.4 (3 CH2); minor isomer: δ 170.3 (C=O); 149.0 (1 arom. C); 144.8, 113.9, 112.0 (3 furyl CH); 139.3 (C=N); 59.5 (CH); 46.8, 30.4, 24.7 (3 CH2). HR-ESI-MS: 208.1077 (calcd 208.1081 for C10H14N3O2, [M+1]+). [α]D25 = –80 (c 1.00, MeOH).

4.7.4. (2S)-N-(Cyclohexylidene)pyrrolidine-2-carbohydrazide 7h

Yield: 0.082 g (39%). IR (film): ν 3261s (HN), 2935s, 1683vs (C=O), 1534m, 1221m, 1043m. 1H NMR ((D6)DMSO): major isomer: δ 10.96 (br. s, HN); 4.09–4.06 (m, CH); 3.27–3.17 (m, 2 proline H); 2.46–1.53 (m, 5 proline H, 10 cyclohexyl H); minor isomer: δ 11.10 (br. s, HN); 4.65–4.62 (m, CH); 3.27–3.17 (m, 2 proline H); 2.46–1.53 (m, 5 proline H, 10 cyclohexyl H). 13C NMR ((D6)DMSO): major isomer: δ
170.5, 167.7 (C=O, C=N); 58.2 (CH); 45.8, 35.4, 30.0, 29.2, 27.3, 26.1, 25.4, 24.0 (3 proline CH₂, 5 cyclohexyl CH₂); *minor isomer:* δ 170.5, 165.4 (C=O, C=N); 58.5 (CH); 46.0, 35.6, 30.4, 29.3, 27.4, 26.2, 25.5, 24.1 (3 proline CH₂, 5 cyclohexyl CH₂).

4.7.5. (2S)-N-(2-Adamantylidene)pyrrolidine-2-carbohydrazide 7i

Yield: 0.104 g (40%). Colorless crystals. Mp 95–97 °C (Et₂O). IR (KBr): ν 3127s (HN), 2915s, 1686vs (C=O), 1542m, 1450m, 1226m. ¹H NMR ((D₆)DMSO): *major isomer:* δ 11.03 (br. s, HN); 4.31–4.28 (m, CH); 3.25–3.13 (m, 2 proline H); 2.55, 2.49 (2 br. s, 2 adamantyl CH); 2.00–1.65 (m, 4 proline H, 12 adamantyl H); *minor isomer:* δ 10.94 (br. s, HN); 4.65–4.62 (m, CH); 2.55, 2.49 (2 br. s, 2 adamantyl CH); 2.41–2.25 (m, 2 proline H); 2.00–1.65 (m, 4 proline H, 12 adamantyl H). ¹³C NMR ((D₆)DMSO): *major isomer:* δ 169.9, 166.1 (C=O, C=N); 58.7 (CH); 46.2, 39.2, 39.0, 37.8, 36.2, 31.9, 29.4, 27.6, 24.4 (3 proline CH₂, 5 adamantyl CH₂ and 4 adamantyl CH); *minor isomer:* δ 170.6, 166.2 (C=O, C=N); 58.4 (CH); 46.0, 39.0, 38.8, 37.6, 36.1, 31.2, 29.3, 27.5, 24.3 (3 proline CH₂, 5 adamantyl CH₂, 4 adamantyl CH).

4.8. General procedure for the synthesis of compounds 8

To a stirred solution of an aldehyde (2 mmol) in EtOH (5 mL), a solution of 2a (1 mmol) in EtOH (5 mL) was added dropwise at room temperature. The mixture was stirred overnight, and then the solvent was removed under reducer pressure. Crude product 8 was purified by crystallization or flash chromatography.

4.8.1. (7aS)-3-(4-Methoxyphenyl)-2-[(Z)-(4-methoxyphenyl)methylidene]amino] hexahydro-1H-pyrrolo[1,2-c]imidazol-1-one 8a

Yield: 0.186 g (72%). Colorless oil (flash chromatography, hexane/AcOEt, 1:1) (lit.⁸a, mp 110–112 °C). IR (KBr): ν 3436br, 2963m, 2936m, 1713vs (C=O), 1608s, 1514s, 1251s. ¹H NMR (CDCl₃): δ 8.32 (s, 1H, CH=N); 7.61, 6.88 (AA’BB’, Jₐ₇ = 8.82, 4 arom. H); 7.30, 6.93 (AA’BB’, Jₐ₇ = 8.67, 4 arom. H); 5.55 (s, 1H, HC(6)); 4.04–4.00 (m, 1H, HC(5)); 3.46–3.40 (m, 1H, HC(2)); 2.90–2.85 (m, 1H, HC(2)); 2.24–
2.16 (m, 2H, HC(4)); 1.95–1.86 (m, 2H, HC(3)). 13C NMR (CDCl$_3$): δ 172.1 (C=O); 161.8, 160.1, 132.2, 127.1 (4 arom. C); 149.9 (C=N); 129.4, 127.7, 114.7, 114.2 (8 arom. CH); 82.4 (C(6)); 63.3 (CH); 55.5 (2 MeO); 56.3, 27.7, 25.1 (3 proline CH$_2$). HR-ESI-MS: 366.1810 (calcd 366.1812 for C$_{21}$H$_{24}$N$_3$O$_3$, [M$+1$]$^+$$).$ $[^{[\alpha]}_D]^{25} = - 75$ (c 1.00, CH$_2$Cl$_2$).

4.8.2. (7aS)-3-(4-Nitrophenyl)-2-{(Z)-(4-nitrophenyl)methyliden]amino} hexahydro-1H-pyrrolo[1,2-c]imidazol-1-one 8b

Yield: 0.216 g (79%). Pale yellow crystals. Mp 144–145°C (Et$_2$O). IR (KBr): ν 3421br, 2954w, 2877w, 1714vs (C=O), 1522s, 1344s. 1H NMR (CDCl$_3$): δ 9.27 (s, 1H, CH=N); 8.26, 7.77 (AA′BB′, $J_{AB} = 9.00$, 4 arom. H); 8.21, 7.62 (AA′BB′, $J_{AB} = 9.00$, 4 arom. H); 5.63 (s, 1H, HC(6)); 4.04–4.00 (m, 1H, HC(5)); 3.46–3.41 (m, 1H, HC(2)); 2.98–2.92 (m, 1H, HC(2)); 2.31–2.23 (m, 1H, HC(4)); 2.21–2.15 (m, 1H, HC(4)); 1.98–1.89 (m, 2H, HC(3)). 13C NMR (CDCl$_3$): δ 172.3 (C=O); 149.5 (C=N); 149.1, 148.4, 146.2, 140.4 (4 arom. C); 128.2, 128.0, 124.3, 124.2 (8 arom. CH); 83.24 (C(6)); 63.99 (CH); 56.40, 28.29, 25.21 (3 proline CH$_2$). HR-ESI-MS: 396.1299 (calcd 396.1303 for C$_{19}$H$_{18}$N$_5$O$_5$, [M$+1$]$^+$$).$ $[^{[\alpha]}_D]^{25} = - 51$ (c 1.00, CH$_2$Cl$_2$).

4.8.3. (7aS)-3-(Furan-2-yl)-2-{(Z)-furan-2-ylmethyliden]amino}hexahydro-1H-pyrrolo[1,2-c]imidazol-1-one 8c

Yield: 0.151 g (69%). Colorless crystals. Mp 184–186°C (Et$_2$O); lit.8b, mp 183–185 °C. IR (KBr): ν 3436br, 3112w, 2973w, 2880w, 1700vs (C=O), 1403m, 1382m, 1335m. 1H NMR (CDCl$_3$): δ 8.85 (s, 1H, CH=N), 7.53–7.48 (m, 1 furyl H); 7.43–7.39 (m, 1 furyl H); 6.78–6.74 (m, 1 furyl H); 6.47–6.43 (m, 1 furyl H); 6.39–6.32 (m, 2 furyl H); 5.61 (s, 1H, HC(6)); 4.12–4.07 (m, 1H, HC(5)); 3.45–3.40 (m, 1H, HC(2)); 2.85–2.79 (m, 1H, HC(2)); 2.25–2.12 (m, 2H, HC(4)); 1.92–1.86 (m, 2H, HC(3)). 13C NMR (CDCl$_3$): δ 172.1 (C=O); 151.4, 149.7 (2 furyl C); 145.1, 143.4 (2 furyl CH); 140.8 (C=N); 114.6, 112.2, 110.6, 108.4 (4 furyl CH); 77.3 (C(6)); 64.1 (CH); 55.76, 27.57, 25.09 (3 proline CH$_2$). HR-ESI-MS: 286.1186 (calcd 286.1186 for C$_{15}$H$_{16}$N$_3$O$_3$, [M$+1$]$^+$$).$ $[^{[\alpha]}_D]^{25} = -193$ (c 0.44, CH$_2$Cl$_2$).

4.9. General procedure for the synthesis of compounds 9a–b
A mixture of 5 (1 mmol) and butyl isocyanate or isothiocyanate (1.1 mmol) in EtOH (5 ml) was heated to reflux for 2 h. The formed product was then filtered off and washed with Et₂O.

4.9.1. 1-{{(2S)-1-Benzylpyrrolidine-2-carbonyl}amino}-3-methylurea 9a

Yield: 0.312 g (98%). Colorless crystals. Mp 85–88 °C (MeOH). IR (KBr): ν 3390s, 3277s (HN), 2958s, 1686vs (C=O), 1671vs (C=O), 1565s, 1254m, 704m. \(^1\)H-NMR (CDCl₃): δ 9.04 (br. s, HN); 7.34–7.25 (m, 5 arom. H); 5.29 (br. s, HN); 3.90, 3.58 (AB, \(J_{AB} = 13.2\), CH₂Ph); 3.34–3.31 (m, CH); 3.19–3.15 (m, butyl CH₂); 3.08–3.06 (m, 1 proline H); 2.42–2.40 (m, 1 proline H); 2.22–2.20 (m, 1 proline H); 1.97–1.78 (m, 3 proline H); 1.45–1.41, 1.33–1.30 (2m, 2 butyl CH₂); 0.90 (t, \(J = 7.8\), butyl Me). \(^{13}\)C NMR (CDCl₃): δ 173.5, 157.6 (2 C=O); 138.2 (1 arom. C); 129.0, 128.6, 127.5 (5 arom. CH); 66.4 (CH); 60.1 (CH₂Ph); 54.2, 30.6, 24.2 (3 proline CH₂); 39.9, 32.1, 19.9 (3 butyl CH₂); 13.7 (butyl Me). HR -ESI-MS: 319.2131 (calcd 319.2129 for C₁₇H₂₇N₄O₂, \([M+1]^+\)). \([α]_D^{25} = \text{–}18\) (c 1.00, CHCl₃).

4.9.2. 1-{{(2S)-1-Benzylpyrrolidine-2-carbonyl}amino}-3-methylthiourea 9b

Yield: 0.272 g (93%). Pale yellow oil. IR (film): ν 3307br. s (HN), 2930s, 1683vs (C=O), 1540s, 1455m, 1273m. \(^1\)H NMR (CDCl₃): δ 9.41 (br. s, HN); 7.44–7.25 (m, 5 arom. H); 7.01 (br. s, HN); 3.98, 3.59 (AB, \(J_{AB} = 13.2\), CH₂Ph); 3.56–3.53 (m, butyl CH₂); 3.35–3.32 (m, CH); 3.11–3.09 (m, 1 proline H); 2.44–2.41 (m, 1 proline H); 2.23–2.20 (m, 1 proline H); 2.00–1.80 (m, 3 proline H); 1.58–1.53, 1.41–1.23 (2m, 2 butyl CH₂); 0.94 (t, \(J = 7.8\), butyl Me). \(^{13}\)C NMR (CDCl₃): δ 180.3 (C=S); 170.6 (C=O); 137.9 (1 arom. C); 129.2, 128.5, 127.5 (5 arom. CH); 66.2 (CH); 60.3 (CH₂Ph); 54.1, 30.7, 24.2 (3 proline CH₂); 44.6, 31.1, 20.1 (3 butyl CH₂); 13.8 (butyl Me). HR-ESI-MS: 335.1899 (calcd 335.1900 for C₁₇H₂₇N₄OS, \([M+1]^+\)). \([α]_D^{25} = \text{–}68\) (c 1.00, CHCl₃).

4.10. General procedure for the synthesis of compounds 10a–b

A mixture of 2a (1 mmol) and butyl isocyanate or isothiocyanate (2.1 mmol) in EtOH (5 ml) was heated to reflux for 2 h. The formed product was then filtered off, washed with Et₂O, and crystallized from H₂O.

4.10.1. 1-Butyl-3-{{(2S)-1-(butylcarbamoyl)pyrrolidine-2-carbonyl}amino}urea 10a
Yield: 0.173 g (76%). Colorless crystals. Mp 80–82 °C (H2O). IR (KBr): ν 3297s (HN), 2958s, 1674 vs (C=O), 1550s, 1364m. 1H NMR ((D6)DMSO): δ 9.64 (br. s, HN); 7.62, 6.62, 6.28 (3s, 3 HN); 4.05–4.03 (m, CH); 3.34–3.24 (m, proline CH2); 3.04–2.95 (m, 2 butyl CH2); 2.01–1.74 (m, 2 proline CH2); 1.41–1.36, 1.29–1.24 (2m, 4 butyl CH2); 0.88–0.84 (m, 2 butyl Me). 13C NMR ((D6)DMSO): δ 173.4, 158.8, 157.2 (3 C=O); 59.2 (CH); 46.3, 29.6, 25.0 (3 proline CH2); 40.6, 40.1, 32.6, 32.1, 20.1, 20.0 (6 butyl CH2); 14.2, 14.1 (2 butyl Me). HR -ESI-MS: 350.2162 (calcd 350.2163 for C15H29N5NaO3, [M+Na]+). [α]D25 = −11 (c 1.00, MeOH).

4.10.2. 1-Butyl-3-[((2S)-1-(butylthiocarbamoyl)pyrrolidine-2-carbonyl)amino]thiourea 10b

Yield: 0.289 g (78%). Colorless crystals. Mp 178–182 °C (H2O). IR (KBr): ν 3254s (HN), 2956s, 1676 vs (C=O), 1546s, 1377m, 1189m. 1H NMR ((D6)DMSO): δ 9.97 (br. s, HN); 9.18, 7.70, 7.53 (3s, 3 HN); 4.66–4.64 (m, CH); 3.60–3.34 (m, proline CH2, 2 butyl CH2); 2.15–1.80 (m, 2 proline CH2); 1.55–1.46, 1.32–1.25 (2m, 4 butyl CH2); 0.90–0.85 (m, 2 butyl Me). 13C NMR ((D6)DMSO): δ 178.9, 173.8, 171.7 (2 C=S, C=O); 64.2 (CH); 48.6, 29.6, 24.5 (3 proline CH2); 45.2, 43.8, 31.5, 31.2, 20.0, 19.9 (6 butyl CH2); 14.3, 14.2 (2 butyl Me). HR-ESI-MS: 382.1701 (calcd 382.1706 for C15H29N5NaOS2, [M+Na]+). [α]D25 = −54 (c 1.00, MeOH).

4.11. Synthesis of 1,2,4-triazole-3-thione 11

A mixture of 9b (1 mmol) and a 2% aqueous solution of NaOH (5 ml) was heated to reflux for 2 h. Then, the mixture was neutralized with AcOH, and the formed precipitate was filtered off and crystallized from MeOH. Yield: 0.225 g (67%). Colorless crystals. Mp 135–136 °C (MeOH). IR (KBr): ν 3258br. m, 1569s, 1455m, 1359m, 1297m. 1H NMR (CDCl3): δ 10.31 (br. s, HN); 7.30–7.21 (m, 5 arom. H); 4.23–3.81 (m, butyl CH2); 3.81, 3.43 (AB, JAB = 13.2, CH2Ph); 3.80–3.72 (m, CH); 3.44–3.13 (m, proline CH2); 2.41–1.85 (m, 2 proline CH2); 1.72–1.32 (m, 2 butyl CH2); 0.96 (t, J = 7.8, butyl Me). 13C NMR (CDCl3): δ 161.2 (C=S); 142.6, 137.8 (triazole C(3), arom. C); 128.8, 128.3, 127.6 (5 arom. CH); 60.1 (CH); 58.2 (CH2Ph); 53.2, 30.2, 23.0 (3 proline CH2); 44.4, 33.2, 20.3 (3 butyl CH2); 13.6
(butyl Me). HR-ESI-MS: 317.1794 (calcd 317.1794 for C\text{\textsubscript{17}}H\text{\textsubscript{25}}N\text{\textsubscript{4}}S, [M+1])]. \([\alpha]_{D}^{25} = -126 (c\ 1.00,\ CHCl\textsubscript{3})

4.12. Synthesis of 1,3,4-thiadiazol-2-amine (12)

A solution of 9b (1 mmol) in 5 ml conc. H\textsubscript{2}SO\textsubscript{4} was kept at r.t. for 1 d. After neutralization of the mixture with aqueous NH\textsubscript{4}OH, the solid product was filtered off, dried, and crystallized from MeOH. Yield: 0.177 g (56%). Yellowish crystals. Mp 99–100 °C (MeOH). IR (KBr): v 3242s (HN), 2953s, 1537s, 1478m, 737m. \[^{1}\text{H} NMR\text{ (CDCl}_3\text{): } \delta \ 7.33–7.24 \text{ (m, 5 arom. H); 5.27 (br. s, HN); 4.02, 3.95 (AB, } J_{AB} = 13.2, \text{ CH}_2\text{ Ph); 3.98–3.96 \text{ (m, CH); 3.34–3.31 \text{ (m, butyl CH} \text{}_2\text{); 3.07–3.04 \text{ (m, 1 proline H); 2.36–2.31 \text{ (m, 2 proline H); 1.92–1.81 \text{ (m, 3 proline H); 1.68–1.63, 1.46–1.43 \text{ (2m, 2 butyl CH} \text{}_2\text{); 0.96 \text{ (t, } J = 7.8, \text{ butyl Me). } ^{13}\text{C NMR \text{ (CDC}_1\text{3): } \delta 170.8, 144.9 \text{ (thiadiazol C(2), C(5)); 139.2 \text{ (1 arom. C); 128.8, 128.3, 127.2 \text{ (5 arom. CH); 63.7 \text{ (CH); 58.0 \text{ (CH}_2\text{ Ph); 53.0, 33.3, 22.9 \text{ (3 proline CH}_2\text{); 47.0, 31.5, 20.0 \text{ (3 butyl CH}_2\text{); 13.7 \text{ (butyl Me). HR-ESI-MS: 317.1794 (calcd 317.1794 for C\text{\textsubscript{17}}H\text{\textsubscript{25}}N\text{\textsubscript{4}}S, [M+1]). } [\alpha]_{D}^{25} = \text{ – 92 (c 1.00, CHCl}_3\text{).}

4.13. X-Ray crystal-structure determination of 7b

All measurements were made on an Agilent Technologies SuperNova area-detector diffractometer19 using CuK\textsubscript{\alpha} radiation (\(\lambda = 1.54184 \text{ Å}\)) from a micro-focus X-ray source and an Oxford Instruments Cryojet XL cooler. The data collection and refinement parameters are given below20 and a view of the molecule is shown in Figure 1. Data reduction was performed with CrysAlisPro19. The intensities were corrected for Lorentz and polarization effects, and an empirical absorption correction using spherical harmonics19 was applied. Equivalent reflections, other than Friedel pairs, were merged. The structure was solved by direct methods using SHELXS97,21 which revealed the positions of all non-hydrogen atoms. The non-hydrogen atoms were refined anisotropically. The amine H-atom was placed in the position indicated by a difference electron density map and its position was allowed to refine together with an isotropic displacement parameter. All remaining H-atoms were placed in geometrically calculated positions and refined by using a riding model where each H-atom was assigned a fixed
isotropic displacement parameter with a value equal to 1.2Ueq of its parent C-atom.

The refinement of the structure was carried out on F2 by using full-matrix least-squares procedures, which minimised the function \(\Sigma w(F_o^2 - F_c^2)^2 \). A correction for secondary extinction was not applied. Refinement of the absolute structure parameter \(2\theta \) yielded a value of \(-0.0(2)\), while the Hooft analysis\(^{21}\) gave \(y = 0.07(5), P2 = 1.000 \) and \(P3 = 0.000 \), which confidently confirms that the refined coordinates represent the true enantiomorph. Neutral atom scattering factors for non-H-atoms were taken from ref.\(^{24}\) and the scattering factors for H-atoms were taken from ref.\(^{25}\). Anomalous dispersion effects were included in \(F_c \);\(^{26}\) the values for \(f' \) and \(f'' \) were those of ref.\(^{27}\). The values of the mass attenuation coefficients are those of ref.\(^{28}\). All calculations were performed using the SHELXL97\(^{21}\) program.

Crystal data for 7b: C17H19N3O2, \(M = 297.36 \), colourless, prism, crystal dimensions 0.15 \(\times \) 0.22 \(\times \) 0.25 mm, monoclinic, space group \(P2_1 \), \(Z = 2 \), reflections for cell determination 6644, 2\(\theta \) range for cell determination 6 – 153\(^\circ \), \(a = 5.54324(6) \) Å, \(b = 10.11476(12) \) Å, \(c = 14.24604(17) \) Å, \(\beta = 97.5394(11) \), \(V = 791.849(16) \) Å\(^3\), \(T = 160(1) \) K, \(D_\lambda = 1.247 \) g cm\(^{-3}\), \(\mu(\text{CuK}\alpha) = 0.675 \) mm\(^{-1}\), scan type \(\omega \), \(2\theta_{(\text{max})} = 153.5\)\(^\circ \), transmission factors (min; max) = 0.887; 1.000, total reflections measured 8322, symmetry independent reflections 3035, reflections with \(I > 2\sigma(I) \) 2996, reflections used in refinement 3035, parameters refined 203, restraints 1; \(R(F) \) [\(I > 2\sigma(I) \) reflections] = 0.0286, \(wR(F)^2 \) [all data] = 0.0800 (\(w = [\sigma^2(F_o^2)+0.0511P]^{\frac{1}{2}}+0.0771P \)\(^{-1}\)), where \(P = (F_o^2+2F_c^2)/3 \), goodness of fit 1.034, final \(\Delta \alpha/\sigma = 0.001 \), \(\Delta \rho \) (max; min) = 0.15; –0.10 e Å\(^{-3}\).

Acknowledgments

The authors thank PD Dr. L. Bigler, University of Zürich, for ESI-HRMS. A. M. P. is grateful for financial support within the project European Social Fund ‘HUMAN – BEST INVESTMENT!’ , co-funded by the European Union.

References
1. Parts of the planned PhD theses of A. M. P and A. W., University of Lodz.

20. CCDC-879024 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

