S-glutathionylation of the Na,K-ATPase catalytic subunit is a determinant of the enzyme redox-sensitivity

Petrushanko, Irina Yu; Yakushev, Sergej; Mitkevich, Vladimir A; Kamanina, Yliya V; Ziganshin, Rustam H; Meng, Xianyu; Anashkina, Anastasiya A; Makhro, Asya; Lopina, Olga D; Gassmann, Max; Makarov, Alexander A; Bogdanova, Anna

Abstract: Na,K-ATPase is highly sensitive to changes in the redox state, and yet the mechanisms of its redox-sensitivity remain unclear. We have explored the possible involvement of S-glutathionylation of the catalytic subunit in redox-induced responses. For the first time the presence of S-glutathionylated cysteine residues was shown in the subunit in duck salt glands, rabbit kidneys, and rat myocardium. Exposure of the Na,K-ATPase to oxidized glutathione (GSSG) resulted in an increase in the number of S-glutathionylated cysteine residues. Increase in S-glutathionylation was associated with dose- and time-dependent suppression of the enzyme function up to its complete inhibition. The enzyme inhibition concurred with S-glutathionylation of the Cys 454, 458, 459 and Cys 244. Upon binding of glutathione to these cysteines the enzyme was unable to interact with adenine nucleotides. Inhibition of the Na,K-ATPase by GSSG did not occur in the presence of ATP at concentration above 0.5 mM. Deglutathionylation of the subunit catalysed by glutaredoxin or dithiothreitol resulted in restoration of the Na,K-ATPase activity. Oxidation of regulatory cysteines made them inaccessible for glutathionylation, but had no profound effect on the enzyme activity. Regulatory S-glutathionylation of the subunit was induced in rat myocardium in response to hypoxia, and was associated with oxidative stress and ATP depletion. S-glutathionylation was followed by suppression of the Na,K-ATPase activity. The rat 2 isoform was more sensitive to GSSG than the 1 isoform. Our findings imply that regulatory S-glutathionylation of the catalytic subunit plays a key role in the redox-induced regulation of Na,K-ATPase activity.

DOI: https://doi.org/10.1074/jbc.M112.391094

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-63738
Accepted Version

Originally published at:
Petrushanko, Irina Yu; Yakushev, Sergej; Mitkevich, Vladimir A; Kamanina, Yliya V; Ziganshin, Rustam H; Meng, Xianyu; Anashkina, Anastasiya A; Makhro, Asya; Lopina, Olga D; Gassmann, Max; Makarov, Alexander A; Bogdanova, Anna (2012). S-glutathionylation of the Na,K-ATPase catalytic subunit is a determinant of the enzyme redox-sensitivity. Journal of Biological Chemistry, 287(38):32195-32205. DOI: https://doi.org/10.1074/jbc.M112.391094
S-glutathionylation of the Na,K-ATPase catalytic α subunit is a determinant of the enzyme redox-sensitivity*

Irina Yu. Petrushanko1, Sergej Yakushev2, Vladimir A. Mitkevich1, Yuliya V. Kamanina3, Rustam H. Ziganshin4, Xianyu Meng3, Anastasiya A. Anashkina1, Asya Makhro2, Olga D. Lopina3, Max Gassmann2, Alexander A. Makarov1#, Anna Bogdanova 2#

1 From the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
2Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
3Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
4Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

*Running title: Catalytic α subunit S-glutathionylation blocks Na,K-ATPase

To whom correspondence should be addressed: Dr Anna Bogdanova
Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland, Phone: +41 44 6358811, Fax: +41 44 6358932 E-Mail: annab@access.uzh.ch; and Dr Alexander A. Makarov Engelhardt Institute of Molecular Biology, RAS, 32 Vavilova street, Moscow 119991, Russia, Phone: +7 499 1354095, Fax: +7 499 1351405, E-mail: aamakarov@eimb.ru

Keywords: Na,K-ATPase; catalytic subunit, S-glutathionylation; redox state; hypoxia

Background: Na,K-ATPase activity is extremely sensitive to changes in the redox state. Results: Binding of glutathione to the regulatory cysteine residues of the catalytic subunit completely inhibits the Na,K-ATPase by blocking the ATP binding site.

Conclusion: S-glutathionylation of the catalytic subunit is revealed as a mechanism controlling the Na,K-ATPase function.

Significance: Regulatory S-glutathionylation adjusts Na,K-ATPase activity to the changes in intracellular redox state and ATP levels.

SUMMARY
Na,K-ATPase is highly sensitive to changes in the redox state, and yet the mechanisms of its redox-sensitivity remain unclear. We have explored the possible involvement of S-glutathionylation of the catalytic α subunit in redox-induced responses. For the first time the presence of S-glutathionylated cysteine residues was shown in the α subunit in duck salt glands, rabbit kidneys, and rat myocardium. Exposure of the Na,K-ATPase to oxidized glutathione (GSSG) resulted in an increase in the number of S-glutathionylated cysteine residues. Increase in S-glutathionylation was associated with dose- and time-dependent suppression of the enzyme function up to its complete inhibition. The enzyme inhibition concurred with S-glutathionylation of the Cys 454, 458, 459 and Cys 244. Upon binding of glutathione to these cysteines the enzyme was unable to interact with adenine nucleotides. Inhibition of the Na,K-ATPase by GSSG did not occur in the presence of ATP at concentration above 0.5 mM. Deglutathionylation of the α subunit catalysed by glutaredoxin or dithiothreitol resulted in restoration of the Na,K-ATPase activity. Oxidation of regulatory cysteines made them inaccessible for glutathionylation, but had no profound effect on the enzyme activity. Regulatory S-glutathionylation of the α subunit was induced in rat myocardium in response to hypoxia, and was associated with oxidative stress and ATP depletion. S-glutathionylation was followed by suppression of the Na,K-ATPase activity. The rat α2 isoform was more sensitive to GSSG than the α1 isoform. Our findings imply that regulatory S-glutathionylation of the catalytic subunit plays a key role in the redox-induced regulation of Na,K-ATPase activity.

Na,K-ATPase uses the energy of ATP to transport Na+ and K+ across the plasma membrane, thus mediating the transmembrane ion gradients responsible for the generation of

Copyright 2012 by The American Society for Biochemistry and Molecular Biology, Inc.
Na,K-ATPase is known to be redox- and oxygen-sensitive in a number of cell types (5,6). H₂O₂ inhibits Na,K-ATPase in brain and kidneys (7). The tissue-specific αβ isozyme is more susceptible to reduction in activity by H₂O₂ than ubiquitously expressed α1β isozyme (8). Previously the inhibitory action of oxidants on the Na,K-ATPase was attributed to irreversible oxidation of thiol groups. Whereas α subunit possesses 23 reduced cysteine residues, β subunit has only one of them (7). However accumulating evidence suggests that redox-induced responses of the Na,K-ATPase cannot be explained by irreversible oxidation of SH-groups alone. Our earlier findings indicated that both loading of cerebellar granule cells with reduced glutathione (GSH) and GSH depletion were equally efficient in blocking Na,K-ATPase (9). Maximal activity of the enzyme in freshly isolated cerebellar neurons was only observed within a "physiological" range of pO₂ and redox state characteristic for neonatal rat cerebellum. Hypoxic and hyperoxic conditions, oxidative and reductive stress were associated with a decrease in Na,K-ATPase activity (9,10). Alterations of NO production in response to hypoxia or ischemia have been shown to play a decisive role in oxygen-inhibited inhibition of Na,K-ATPase (10-13). Taken together these findings suggest that Na,K-ATPase, similar to numerous other redox-sensitive enzymes (14,15), may respond to shifts in the redox state and oxygen availability by S-nitrosylation and S-glutathionylation of the regulatory thiol groups. S-glutathionylation of the Na,K-ATPase β1 and FXYD subunits has been recently demonstrated (16,17). Binding of glutathione to a single reduced cysteine residue in the regulatory β subunit caused a modest decrease in the Na,K-ATPase activity in cardiomyocytes (16). These minor effects of S-glutathionylation on the enzyme function did not explain robust redox-induced responses of the enzyme (9,10,12). S-glutathionylation of any of the 23 evolutionary conserved cysteine residues of the catalytic α subunit has never been reported. Fifteen of them are localized in the cytosolic loops of the subunit forming the ATP binding site. These cysteine residues are potentially accessible for interaction with cytosolic glutathione pool and for enzymes catalyzing deglutathionylation. Hence, we have hypothesized that S-glutathionylation of cysteine residues of the catalytic α subunit may be actively involved in redox-induced regulation of the Na,K-ATPase.

Using purified enzyme preparations from rabbit kidneys and duck salt glands (α1β1 isozyme), and crude homogenate from isolated blood-perfused rat hearts (α1β and α2β isozymes), we have revealed the presence of basal and regulatory S-glutathionylation sites in the α subunit of the Na,K-ATPase. Binding of glutathione to the Cys 454, 458, 459 and Cys 244 was associated with complete inhibition of the enzyme. The inhibitory action of S-glutathionylation was caused by occlusion of the adenine nucleotide binding site by glutathione.

EXPERIMENTAL PROCEDURES

Animal handling and experimentation was approved by the Swiss Federal Veterinary Office and the Bioethic Committee of the Faculty of Biology, M.V. Lomonosov Moscow State University. Experiments were performed in accordance with the Swiss and Russian Federation animal protection laws and institutional guidelines that comply with the guidelines of the Institute for Laboratory Animal Research (ILAR).

Myocardial tissue isolation and handling—Wistar male rats (300–400 g) were anesthetized, heparinized, and 8–10 ml of blood and the heart were collected. The hearts were then perfused via aorta with autologous blood equilibrated with a humidified gas phase containing 20% (normoxia, hemoglobin oxygen saturation, SO₂=98%) or 5% O₂ (hypoxia, SO₂=35%), 5% CO₂ and 75% or 90% N₂, 37 °C, 1 h) (13). The hearts were then chilled and perfused with an ice-cold sodium/potassium-free isotonic buffer solution. Ventricular tissue was subsequently used to assess the Na⁺, K⁺, water content, GSH.
and GSSG content and Na,K-ATPase activity (13).

Na,K-ATPase purification and activity measurements—Na,K-ATPase (α1β1 isozyme) was purified from duck salt glands and rabbit kidney medulla (for details see (18,19)) up to the purity grade of 99% and 95% of total protein respectively as confirmed by electrophoresis. Na,K-ATPase specific activity of the duck enzyme reached ~2400 μmol P_i (mg protein × h)^(-1) at 37 °C, and in rabbit preparations was 800-1200 μmol P_i (mg protein × h)^(-1). The activity of Na,K-ATPase (α1β and α2β isozymes) from the rat heart was assessed either in the crude homogenate prepared from ventricular tissue (13) or in the sarcolemmal membrane fraction (20). Activity of the duck, rabbit and rat Na,K-ATPase was measured as ouabain-sensitive (1mM) ATP cleavage in the medium containing (in mM): 130 NaCl, 20 KCl, 3 MgCl_2, 3 ATP, and 30 imidazole, pH 7.4 at 37 °C, when not stated otherwise (9,13,21).

Kinetics of the inhibitory action of GSSG on the rabbit Na,K-ATPase was monitored over 30 min in the presence of 25, 71.5, or 143 μM GSSG at room temperature. Samples containing 3-5 μg Na,K-ATPase were collected every 5 min for activity measurements. A ~500-fold excess of GSSG over the number of enzyme SH-groups made the Na,K-ATPase inhibition rate essentially independent of the inhibitor concentration. The interaction of GSSG with the enzyme was described by the pseudo-first order kinetics equation \(A_t = A_0 \cdot e^{-k[GSSG]t} \), where \(A_0 \) and \(A_t \) are the enzyme initial and current activity, \(k \) is the inhibition rate constant, [GSSG] is the inhibitor concentration, and \(t \) is the time of exposure to GSSG. The product of \(k \) and [GSSG] was then determined from the slope of the linear plot showing \(\ln(A_t / A_0) \) as a function of time and the inhibition rate constant calculated.

Na,K-ATPase activity was assessed as a function of the GSSG concentration. The purified duck and rabbit enzyme as well as the sarcolemmal fraction isolated from the ventricular homogenate were exposed to 0.05-1 mM GSSG. Na,K-ATPase activity was then plotted against GSSG concentration and fitted using the logistic sigmoid function to obtain the values of apparent IC_{50} (22) using Origin 7.0 (MicroCal, USA).

Immunoblotting—S-glutathionylation of the α1 and β1 subunits in purified Na,K-ATPase preparations, and of the α1 subunit in the crude ventricular homogenates and sarcolemmal fraction were assessed using immunoblotting. Proteins were separated on SDS PAGE, and transferred to a nitrocellulose membrane. After the blocking procedure mouse monoclonal anti-glutathione antibody (Chemicon Millipore, MAB5310) was added. The membranes were then stripped and mouse monoclonal anti-Na,K-ATPase α1 antibody clone C464-6 (Upstate Millipore) and anti-Na,K-ATPase β1 antibody clone C464-8 (Upstate Millipore) were applied in order to detect the total amount of α1 and β1 subunits, followed by horse radish peroxidase-conjugated secondary antibodies. Densitometric analysis was performed and the results were expressed as α1(β1)-SSG/total α1.

Isothermal titration calorimetry (ITC)—The thermodynamic parameters of adenine nucleotide binding to rabbit Na,K-ATPase were measured using a MicroCal iTC200 instrument (MicroCal, Northampton, MA), as described elsewhere (23). Experiments with non-glutathionylated (dithiothreitol (DTT), 100 μM) and glutathionylated (GSSG, 1 mM) Na,K-ATPase were carried out at 25 °C in imidazole buffer containing 25 mM imidazole, 1mM EDTA, 250 mM sucrose, pH 7.5. Aliquots of the ligand (3.8 μL, 20-30 μM) were injected into the cell containing 2-3 μM Na,K-ATPase to achieve a complete binding isotherm. To obtain the effective heat of binding the heat of dilution was subtracted from the heat of the reaction. The resulting titration curves were fitted using the MicroCal Origin software, assuming one set of binding sites. Affinity constants (K_a) and enthalpy variations (ΔH) were determined and the Gibbs energy (ΔG) and the entropy variations (ΔS) were calculated from the equation: \(ΔG = -RT \ln K_a = ΔH - TΔS \).

Mass spectrometry—Cysteine residues undergoing S-glutathionylation in the duck Na,K-ATPase α1 subunit were identified using MALDI-TOF MS. The enzyme was exposed to 1.7 mM GSH and 170 μM GSSG for 30 min at room temperature and then incubated with SDS (5 min, 37 °C). Alpha and β subunits were separated by SDS PAGE in the absence of β-mercaptoethanol and the band corresponding to the α1 subunit was excised and subjected to in-gel digestion by trypsin (24).
or by α-chymotrypsin. For in-gel digestion α-chymotrypsin or trypsin was dissolved in 50 mM ammonium bicarbonate buffer solution in concentrations of 30 ng/μl or 13 ng/μl correspondingly just before use. MALDI-TOF MS analysis of the resulting peptide fragments was performed using Ultraflex II TOF/TOF mass spectrometer (Bruker Daltonics, Germany). Tryptic fragments in solution were transferred onto the MTP 384 target plate polished steel TF mass spectrometric target and dried on air, and then overlaid with a matrix solution consisting of 2,4-dihydroxybenzoic acid (part number 201346, Bruker Daltonics) and α-cyano-4-hydroxycinnamic acid (part number 201344, Bruker Daltonics) in concentrations of 2.4 mg/ml and 3 mg/ml, respectively, in 50% acetonitrile in water, 0.1% TFA. Results of 4000 laser impulses (200 impulses from 20 different points of one spot) were summed up for every spectrum. The MS data was processed using Bruker Daltonics Flex Analysis 2.4 software, the accuracy of mass determination of peptides was fixed to 100 ppm. Correlation of the MS data with the protein sequence was done using Bruker Daltonics BioTools 3.0 software.

Modeling—Comparison of the amino acid sequences of pig (P05024 in the UniProtKB database), duck (Q7ZYV1), rabbit (Q9N0Z6) and rat (P06685) indicates that the localization of cysteine residues is conserved in all species. This allows to use the existing crystallographic 3.5 Å structure of the porcine α1 subunit of Na,K-ATPase (PDB code 3b8e) to model the changes appearing in the enzyme after glutathionylation. Three-dimensional models of the S-glutathionylated Na,K-ATPase catalytic α1 subunit were created on the basis of the previously published 3.5 Å structure of the porcine α1 subunit (25). Cartesian coordinates were obtained from the Brookhaven Protein Data Bank (PDB code 3b8e). Corresponding cysteine residues in duck, rabbit or rat α1 subunit are shifted by 2 upwards compared to the numbering for cysteines in porcine α1 sequence (denoted as cysteines5). For the simulation of S-glutathionylation, GSH molecules were inserted into the protein via disulfide bridges with cysteines. Two models have been built—a model containing four glutathiones bound to the Cys 246®, 452®, 456®, 457® residues, and a model with the ATP docked to the protein as described (26). Glutathione and ATP were inserted into protein with minimal geometric strain and no steric overlaps. Each model was subjected to energy minimization until convergence, using a combination of SteepestDescents, Conjugate Gradients and TruncatedNewton algorithms. The energy calculations were carried out under the MMFF94x force field using the MOE version 2009.10 modeling software [Molecular Operating Environment (MOE), 2011.10; Chemical Computing Group Inc., 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2011]. Then the models have been superimposed using the structural alignment by MOE software.

Statistical analysis—Values are shown as mean ± standard deviation. Statistical analysis was performed using GraphPad InStat 3 (GraphPad Software, Inc. La Jolla CA). Either the Student’s t-test, or one-way Anova with Bonferroni post-test were applied depending on the type of experiments and the difference was considered significant at p<0.05.

RESULTS

The α subunit of the Na,K-ATPase is S-glutathionylated—The presence of S-glutathionylated cysteine residues in ubiquitously expressed α1 subunit of the Na,K-ATPase was assessed using immunoblotting. Basal S-glutathionylation was observed in the α1 subunit of the duck (Fig. 1A), rabbit (Fig. 1C) and rat (Fig. 1D) enzyme. Beta1 subunit was also S-glutathionylated as shown in Fig. 1B for the duck enzyme preparation. S-glutathionylation of the α1, but not of β1 subunit, was further enhanced upon exposure of the enzyme to GSSG (1mM) (Fig. 1A,B and C). Treatment of the rabbit enzyme with 100 μM DTT reduced the basal S-glutathionylation level of the α1 subunit (Fig. 1C). Exposure of rat myocardium to hypoxia was associated with an increase in the α1 subunit S-glutathionylation in crude ventricular homogenates up to 1.5-fold over the values observed in normoxic heart (Fig. 1D). S-glutathionylation of the α1 subunit of the Na,K-ATPase in hypoxic myocardium occurred concurrently with an increase of GSSG levels in tissue from 86 ± 8 to 176 ± 10 μmole/l tissue water. Exposure of the purified duck Na,K-ATPase to a mixture of 1.7mM GSH and 170μM GSSG imitating conditions occurring in hypoxic heart resulted in complete inactivation of the enzyme.
GSSG treatment causes inhibition of the Na,K-ATPase—Exposure of rabbit Na,K-ATPase to GSSG resulted in time- and dose-dependent suppression of Na,K-ATPase activity (Fig. 2A). The inhibitory action of GSSG was biphasic. Fast interaction of GSSG with the enzyme accounting for ~80% inhibition of the Na,K-ATPase was followed by a slow interaction phase leading to complete inactivation of the enzyme (Fig. 2B). The corresponding rate constants were 1655 M⁻¹ min⁻¹ for the fast and 163 M⁻¹ min⁻¹ for the slow interaction phases (Fig. 2B).

The GSSG concentration at half-maximal inhibition (IC₅₀) was similar for the rabbit and duck α1β1 isozymes (66 ± 3 and 59 ± 2 μM, respectively) (Fig. 3A, B). Complete inhibition of the Na,K-ATPase by 100 μM GSSG was observed even at the presence of 10 mM GSH. The sensitivity of the duck Na,K-ATPase to GSSG was lost after 4 h exposure of the enzyme to 20% O₂ (air) at 4 °C prior to GSSG treatment (Fig. 3B). Similar desensitization to the inhibitory action of GSSG was confirmed for the rat sarcolemmal Na,K-ATPase pre-exposed to 100% O₂ for 30 min prior to GSSG treatment (Fig. 4A). The loss of sensitivity to GSSG was not associated with any profound effect on the Na,K-ATPase function (Fig. 1). Prolonged (6-9 months) storage of myocardial tissue at −80 °C at 20% O₂ (air) was associated with the same loss of sensitivity of the rat Na,K-ATPase to GSSG along with preservation of its hydrolytic activity. This did not occur in tissue samples stored in liquid nitrogen (Fig. 4B).

Alpha subunit S-glutathionylation regulates Na,K-ATPase activity in hypoxic rat heart—S-glutathionylation of the Na,K-ATPase α1 subunit triggered by hypoxic exposure of rat heart (Fig. 1D) was associated with suppression of the enzyme function in crude ventricular tissue homogenate (Fig. 5A). Inhibition of the enzyme contributed to significant Na⁺ accumulation in ventricular tissue (from 40.1 ± 4.3 to 55.0 ± 2.7 mmol kg⁻¹ dry weight, p=0.043) and K⁺ loss (from 269 ± 9 to 222 ± 15 mmol kg⁻¹ dry weight, p=0.031) during hypoxic exposure. Some of the enzyme remained inhibited by the α subunit S-glutathionylation even in normoxic myocardium since de-glutathionylation (DTT exposure) was associated with only modest increase in Na,K-ATPase activity (Fig. 5B). Induction of S-glutathionylation of the α subunit by supplementation of glutaredoxin 1 (GRX) and its substrates, NADPH and GSH, caused inhibition of the enzyme (Fig. 5B). The inhibitory effect of GRX treatment was directly proportional to the S-glutathionylation level (Fig. 5C). Depending on GSH/GSSG availability GRX catalyzed either S-glutathionylation or de-glutathionylation of the α subunit as described earlier for other GRX targets (27). Shifting the GSH levels by treating the tissue homogenate with glutathione reductase resulted in GRX-induced S-glutathionylation and the enzyme inhibition (Fig. 5C). GSH binding to cysteine residues affecting the Na,K-ATPase activity occurred only in the presence of GRX as a catalyst (Fig. 5B,C). De-glutathionylation of the α subunit was catalyzed by GRX in sarcolemmal fraction pre-treated with GSSG to induce S-glutathionylation (Fig. 5D). As mentioned above, Na,K-ATPase in the myocardium is presented by α1β and α2β isozymes. The α2β isozyme is known to be more susceptible to oxidation than the α1β isozyme and may be blocked by 10 μM ouabain whereas the α1β isozyme in rat does not respond to this inhibitor concentration (28). We have used this difference in ouabain sensitivity to assess the responses of both isozymes in rat sarcolemmal membranes to GSSG treatment. Na,K-ATPase function was assessed in two sets of samples, one of which contained 10 μM ouabain whereas the other was ouabain-free. As shown in Fig. 5E, the α2β isozyme was blocked by GSSG at concentrations 6-fold lower than the α1β isozyme with IC₅₀ at 43.6 ± 9.2 and 265 ± 13 μM for the α2 and α1 isoforms, respectively. Progressive inhibition of the α1β isozyme followed a dose-dependent increase in S-glutathionylation of the α1 subunit shown as bars in Fig. 5E.

S-Glutathionylation prevents the adenine nucleotide binding to Na,K-ATPase—The experiments presented above were performed in the absence of ATP since GSSG treatment of the Na,K-ATPase precluded enzyme activity measurements. Pre-treatment of rabbit Na,K-ATPase with GSSG prior to exposing the enzyme to ATP completely inhibited the enzyme (Fig. 6A). However, when GSSG was added to the enzyme, in the presence of ATP at concentration exceeding 0.5 mM, the inhibitory effect of GSSG was completely averted (Fig. 6B). Thus, the inhibitory action of GSSG on the Na,K-ATPase was caused by its interaction with the free enzyme and not with the enzyme-substrate complex.
Isothermal titration calorimetry (ITC) was used for direct assessment of the thermodynamic parameters for nucleotide binding to rabbit Na,K-ATPase in non-glutathionylated and glutathionylated forms. Heat production associated with the interaction of ADP with the rabbit enzyme was measured in the presence of DTT or GSSG. A set of original data obtained in such experiments is shown in Fig. 5C. The ADP binding to Na,K-ATPase was enthalpy-driven ($\Delta H = -8.2 \pm 0.3$ kcal mole$^{-1}$, $\Delta T\Delta S = 1.1$ kcal mole$^{-1}$) with a binding constant K_a of $6.8 \pm 1.4 \times 10^6$ M$^{-1}$. The stoichiometry of ADP binding to Na,K-ATPase was ~0.8. S-glutathionylation of the enzyme by GSSG completely abolished ADP binding to the Na,K-ATPase (Fig. 6C).

Glutathionylated SH-groups are localized in the large and small cytosolic loops of the α subunit—Identification of the cysteine residues of the duck Na,K-ATPase that are S-glutathionylated in the native active enzyme, and cysteines undergoing S-glutathionylation upon exposure to GSSG was performed using mass-spectrometry. Duck Na,K-ATPase was exposed to a mixture of 1.7 mM GSH and 170 μM GSSG, the concentrations found to be present in hypoxic heart and to effectively inhibit the enzyme function. Enzyme activity measurements were performed in control and GSH/GSSG-treated protein samples. Thereafter two enzyme samples were collected from control and treated enzyme and each of them proteolysed by either trypsin or chymotrypsin and MALDI-TOF MS was used to detect cysteine thiol modifications in resulting proteolytic fragments. The $\alpha 1$ sequence coverage reached 70-80% for chymotrypsin-digested fragments and was 50-60% for trypsic fragments. The list of cystolic cysteine residues of the $\alpha 1$ subunit undergoing S-glutathionylation in the control and treated enzyme is summarized in Table 1. Listed there are the m/z ratios for each fragment and relative peak intensities. Localisation of cysteines within the sequence is schematically shown in Fig. 6D. As follows from the Table 1, treatment of the enzyme with GSH/GSSG was associated with an increase in S-glutathionylation of the Cys 454, 458, 459 of the big cytosolic loop and the Cys 244 localized within the small cytosolic loop of the $\alpha 1$ subunit. Cysteine residue 423 has never been found S-glutathionylated.

Glutathionylation of residues Cys 452α, 456α and 457α disrupts the ATP binding by $\alpha 1$ subunit of Na,K-ATPase—The structural alignment of the model containing three glutathionyl residues bound to the Cys 452α, 456α, 457α residues (corresponding to the Cys 454, 458 and 459 residues in the duck, rabbit and rat sequences), and the model with the ATP molecule docked to the protein, has been done by the MOE software (Fig. 7A). According to the model, the distance between the terminal negatively charged phosphate of the ATP molecule and carboxyl group of glutathione bound to the Cys 452α carrying the same negative charge is less than 8 Å (Fig. 7A). Electrostatic repulsion forces between these two negative charges are sufficient to hinder attachment of the ATP to the S-glutathionylated binding site moiety. The same is true for glutathione binding to the Cys 452α in the presence of ATP in docked position. This electrostatic repulsion will become even more pronounced as further two cysteines in the vicinity of ATP binding site, Cys 456α and 457α (Fig. 7A), are S-glutathionylated. The results of modelling comply with the observation that interaction of ATP with its binding site and binding of glutathione to the regulatory cysteine residues are mutually exclusive (Fig. 6A-C). Modelling based on the crystal structure of the enzyme in E2P conformation did not show any significant interaction of Cys 246α with the ATP binding site. However, this may not hold true for the enzyme in E1 conformation (25).

DISCUSSION

The obtained data indicate that S-glutathionylation of the catalytic α subunit may result in complete inactivation of the enzyme by making its adenine nucleotide binding site inaccessible for ATP. Regulatory S-glutathionylation does not occur spontaneously, but only when ATP depletion reaches a threshold of ~500 μM (Fig. 6B). Thereby, inactivation of the enzyme prevents irreversible ATP deprivation under conditions of limited ATP supply. S-glutathionylation of regulatory cysteines is promoted under oxidative stress when GSSG concentration increases in the cytosol. However, it may also be mediated by GSH in the presence of GRX (Fig. 5C) indicating that oxidative stress is not necessarily required to trigger S-glutathionylation. ATP depletion on the contrary is absolutely required to induce regulatory S-glutathionylation. The ability of ATP to protect Na,K-ATPase from HO$^-\$-induced inactivation has been shown previously (27).
Basal S-glutathionylation of the α subunit—In contrast to regulatory S-glutathionylation, endogenous basal S-glutathionylation is an intrinsic feature of Na,K-ATPase catalytic subunit and is independent of the ATP availability. Removal of basal glutathionylation by DTT was not followed by an alteration of the Na,K-ATPase activity. Physiological relevance of basal S-glutathionylation remains unclear. However, its high abundance suggests that basal S-glutathionylation is required for the maintenance of optimal protein function. Similar to the α subunit of Na,K-ATPase basal S-glutathionylation was described for its structural homologue, SERCA-2A (28) as well as for ryanodine receptors (29).

S-glutathionylation of the α subunit leads to complete inhibition of the Na,K-ATPase—Interaction of glutathione with regulatory cysteine residues resulted in complete inhibition of the enzyme (Figs. 3, 5). S-glutathionylation of the catalytic subunit associated with the changes in enzyme activity represents typical regulatory glutathionylation as it had been described earlier (30). Hypoxia is a physiological stimulus that induces regulatory S-glutathionylation in rat heart. Oxygen consumption rate in the myocardium exceeds that in the brain and reduction of the O₂ supply of this tissue is followed by rapid reduction in ATP levels (13) along with GSSG accumulation (see above). As we have demonstrated in the present study, these conditions promote regulatory S-glutathionylation. Na,K-ATPase may be S-glutathionylated in a reaction of thiol-disulfide exchange within the physiological concentration range of GSH and GSSG of 1-10 mM and 50-500 μM respectively ((9,31,32) and Figs 3, 5E). Thioldisulfide exchange reaction with glutathione is comparatively rare, the few other proteins where it is also physiologically relevant are c-Jun (33) and aldose reductase (34). For the vast majority of other proteins including the β subunit of the Na,K-ATPase intermediate S-nitrosoylation step or other thiol modifications preclude the formation of S-glutathionylated adducts (16).

Regulation of the Na,K-ATPase function by S-glutathionylation is fast (Fig. 2) and completely reversible (Fig. 5C). GRX actively participates in deglutathionylation or induction of S-glutathionylation depending on the changes in GSH and NADPH levels. Thereby GRX coordinates the activity of numerous redox-sensitive proteins adjusting to the changes in the redox microenvironment ((35-37) and Fig. 5B, D). Spontaneous deglutathionylation catalyzed by GRX and thioredoxins is most likely to be the cause of the gradual loss of the inhibitory effect of ischemia on the Na,K-ATPase in heart tissue homogenate with time, reported by Fuller et al. (12).

Biphasic kinetics of the inhibitory action of GSSG on Na,K-ATPase activity may reflect the existence of two distinct classes of regulatory thiol groups, as shown before for the glycogen debranching enzyme in rabbit skeletal muscle (38), or alternatively two conformational states (e.g. E₁ and E₂) of the Na,K-ATPase in which the same thiol groups become more or less accessible to interactions with GSSG.

Greater susceptibility of the α2β isozyme to inhibitory S-glutathionylation by GSSG in rat sarcolemmal membranes is of physiological importance (Fig. 5E). The α2 isoform of the catalytic subunit is mainly localized in the T-tubular zones, where it is associated with the Na⁺/Ca²⁺ exchanger (36). Thus, S-glutathionylation and the following inhibition of the α2β isozyme may have a profound effect on the intracellular Ca²⁺ handling in cardiomyocytes (36,37,39). As the α2 isoform has been reported to particularly prone to oxidation (8), more favorable binding of glutathione to this isoform will protect it from oxidation.

Severe oxidative stress is associated with irreversible oxidation of the regulatory thiols to sulfonic or sulfonic acid. When oxidized to –SO₂⁻ or –SO₃⁻, the thiol groups cannot be S-glutathionylated and the Na,K-ATPase loses its redox-sensitivity. In our study oxidation has been induced by exposure of the enzyme to 20-100% O₂ (Fig. 3B and Fig. 4). Isolation of cardiomyocytes from adult myocardium also inevitably results in oxidative stress and most likely leads to the inaccessibility of the α subunit cysteines for regulatory glutathionylation (16). Cys 46 of the β subunit is localized almost within the lipid bilayer, less exposed to the cytosol and hence is more resistant to oxidation. It may still undergo S-glutathionylation even in isolated cardiomyocytes as reported earlier (16).

Localization of the regulatory cysteines—The obtained results indicate that inhibition of the Na,K-ATPase activity may be induced by S-glutathionylation of at least 3 regulatory cysteine residues localized within the big cytosolic loop of its α subunit, Cys 454, 458, and 459. The
inability of the enzyme to bind ATP in S-glutathionylated form results from an increase in negative charge within the ATP binding pocket. The role of S-glutathionylation of the Cys244 remains to be clarified. Along with the data of mass spectrometry, clear differences in sensitivity to the inhibitory action of GSSG on the α1β and α2β isozymes (Fig. 5E) suggest that this cysteine residue may play a regulatory role as well. The more sensitive α2 isoform of the catalytic subunit possesses one additional cysteine in position 236, which may be a target for S-glutathionylation along with Cys 244. It is tempting to suggest that this alteration in the α2 sequence compared to that of α1 is a cause of amplification of the inhibitory effect of GSSG observed for the α2β isozyme in rat heart (Fig. 5E).

Ca2+-transporting ATPase SERCA2A, a homologue of the Na,K-ATPase, has also been reported to possess a site of regulatory S-glutathionylation (28). But in contrast to Na,K-ATPase, SERCA2A is activated upon S-glutathionylation of a single cysteine residue, Cys 674. This cysteine is absent in all α subunit isoforms of the Na,K-ATPase. The conserved localization of cysteine residues within the sequence of SERCA2A and the α subunit of the Na,K-ATPase is necessitated by the regulatory function of these amino acids. Although mutations of the Cys residues to Ser or Ala in the α subunit were not associated with significant changes in the enzyme activity (40), reversible thiol modifications of some of them may have a striking effect on the Na,K-ATPase function. Our data indicate that the resulting mutants will render the enzyme largely redox-insensitive due to the lack of sites of regulatory S-glutathionylation.

Schematic representation of the role of regulatory S-glutathionylation in the control of Na,K-ATPase is shown in Fig. 7B. Induction of regulatory S-glutathionylation allows to quickly inactivate the enzyme under conditions of limited ATP supply. Mild oxidative stress (e.g. associated with hypoxic exposure) results in an increase in GSSG and oxidation of regulatory thiols to sulfenic acid (-SOH). Taken together these changes promote S-glutathionylation of cysteine residues thereby inhibiting the Na,K-ATPase and protecting thiols from irreversible oxidation. When not protected, the regulatory thiols get further oxidized to sulfenic and sulfonic acid making the enzyme insensitive to the changes in ATP levels and the redox state.

Our findings reveal the importance of S-glutathionylation of cysteine residues of the Na,K-ATPase catalytic subunit in redox-induced responses of the enzyme. S-glutathionylation of the regulatory cysteine(s) acts as a switch turning off the Na,K-ATPase at the low ATP level to prevent irreversible ATP depletion.
REFERENCES

FOOTNOTES

*This study was funded by the Swiss Academy of Sciences (SNF grants #112449 and #310030_124970/1 to AB) and Forschungskredit scholarship for SY, by the Russian Foundation for Basic Research (grants 07-04-01355-a and 08-04-01321-a), by the Molecular and Cellular Biology Program of the Russian Academy of Sciences, and by the Russian Federal Program (contract 16.512.11.2280) to AM and IP.

These authors contributed equally to the work.

FIGURE LEGENDS

FIGURE 1. S-Glutathionylation of the α and β subunits of Na,K-ATPase. Basal S-glutathionylation and S-glutathionylation after 1 h of incubation with 1 mM GSSG for α1 (A) and β1 (B) subunits of the duck Na,K-ATPase. Bars represent the changes in the S-glutathionylated (GSS-α1/β1) form of the protein normalized by its total amount. n=3, mean ± s.d. Presented above are the original immunoblotting readouts. Asterisk indicates significant differences (p=0.014) relative to control as determined by the two-tailed t-test. (C) Changes in S-glutathionylation of the α1 subunit isolated from rabbit kidneys in the absence (lanes 1 and 3) or in the presence (lanes 2 and 4) of 100 μM dithiothreitol and thereafter exposed to 1 mM GSSG at 25 ºC for 25 min (lanes 3 and 4). (D) S-glutathionylation of the α1 subunit in rat hearts perfused with normoxic (Norm, n=3) or hypoxic (Hyp, n=5) blood for 1 h. Bars represent the S-glutathionylated form of the protein (GSS-α1) normalised to total amount of the α1 protein (mean ± s.d.). Asterisk indicates significant differences (p=0.0124) relative to the normoxic heart sample as determined by one way ANOVA.

FIGURE 2. Kinetics of GSSG-induced inhibition of rabbit kidney Na,K-ATPase. (A) Changes in the activity of the Na,K-ATPase during the incubation in the absence (filled squares) or presence of 25 (open diamonds), 71.5 (open triangles) or 143 μM (open circles) of GSSG. Data are represented as the mean of 3 experiments ± s.d. Errors is less than 2 (not shown). (B) Logarithm of the relative Na,K-ATPase activity A_t/A_0 was plotted against the time (t) of incubation with 143 μM GSSG. A_0 denotes the activity of Na,K-ATPase without GSSG and A_t denotes the activity at time (t) of incubation with
GSSG. The inhibition constants (k) for the fast and slow phases of the reaction were obtained from the slope of the linear part of the curve by dividing it by the GSSG concentration in the medium.

FIGURE 3. Dose-response of the inhibitory effect of GSSG on the purified Na,K-ATPase preparations. (A) Inhibition of the Na,K-ATPase isolated from rabbit kidneys by GSSG as a function of GSSG concentration. The enzyme activity was assessed after incubation with GSSG (25 min, 25 °C) and normalized to activity of the non-treated enzyme. The apparent IC50, obtained by fitting the data using the logistic sigmoid function, was 66±3 μM. (B) Inhibition of the Na,K-ATPase isolated from duck salt glands by GSSG as a function of GSSG concentration (filled squares), as described above. The effect of exposure to air (4 h, 4 °C) prior to treatment with GSSG was also determined (open circle). The apparent IC50 for the inhibition with GSSG of the duck enzyme before exposure to air was 59±2 μM. Data is represented as the mean of 3 experiments ± s.d.

FIGURE 4. The effect of incubation of the SL fraction in the atmosphere of pure O2 and tissue storage –80 °C in contact with air, on the response of the Na,K-ATPase to hypoxia or GSSG treatment. (A) The effect of various concentrations of GSSG on the Na,K-ATPase function in freshly prepared SL (sarcolemmal membranes, filled triangles) or SL pre-exposed to the atmosphere of 100% O2 for 30 min before GSSG treatment (open squares) n=4 per condition, mean ± s.d. (B) Na,K-ATPase activity in crude ventricular tissue homogenates prepared from ventricular tissue and stored for 4-8 weeks either at –80 °C in contact with air (grey bars) or in the atmosphere of liquid nitrogen (black bars). Data presented as a mean of 5 independent experiments ± s.d. Asterisk indicates significant differences (p=0.0078) relative to the corresponding N2-stored normoxic control as determined by the two-tailed unpaired t-test.

FIGURE 5. Regulation of the Na,K-ATPase in rat heart by S-glutathionylation. (A) The activity of the Na,K-ATPase in crude homogenate prepared from normoxic and hypoxic hearts. n=5 per condition. Asterisk denotes p=0.0039. (B) Effects of 100 μM DTT, and GRX/NADPH-catalysed (0.6 U GRX/200 μM NADPH) S-glutathionylation by 300 μM GSH on Na,K-ATPase activity in normoxic crude ventricular homogenates. n=4 per group. Asterisk indicates p=0.0059 relative to the non-treated crude homogenate sample as determined by the two-tailed paired t-test. (C) Dose-dependent GSH-induced S-glutathionylation (grey bars) and the corresponding changes in the activity of the enzyme (line) in crude homogenate treated with glutathione reductase and GRX/NADPH. n=4. (D) Effect of GSSG-induced glutathionylation and GRX-catalysed deglutathionylation on the enzyme function in sarcolemmal membranes prepared from normoxic crude ventricular homogenates. Data are represented as mean of 4 hearts per condition ± s.d. Shown in the upper panel is a representative western blot for the total and S-glutathionylated α1 subunit. * denotes p=0.0001 compared to the GRX-treated control and # stands for p=0.002 compared to the sample treated with GSSG alone. (E) Differential sensitivity of the α1 and α2 isoforms to the inhibitory action of GSSG. Activity of the Na,K-ATPase (α1+α2) or the α1 isozyme alone was assessed in sarcolemmal membranes prepared from the normoxic heart treated with various GSSG concentrations. Activity of the α2 isozyme was calculated by subtracting the activity of the α1 isoform from the total Na,K-ATPase activity. Fitting of the plots with double (α1+α2) or single (α1 or α2 alone) logistic sigmoidal functions was performed giving apparent IC50 for α1 as 271.1±1.7 μM and for α2 as 43.6±9.2 μM. Grey bars and the lower panel show the changes in S-glutathionylation of the α1 subunit followed by the corresponding changes in the enzyme activity. n=5 per group. All plotted data is represented as mean values ± s.d.

FIGURE 6. Competition between nucleotides and GSSG for the Na,K-ATPase nucleotide binding site. (A) Pre-treatment of the Na,K-ATPase prevents the dose-dependent activation of the Na,K-ATPase with ATP. Na,K-ATPase purified from rabbit kidney was pre-incubated both in the presence and absence 70 μM GSSG for 25 min and then its activity was measured as a function of ATP availability. The data is represented as mean values ± s.d. n=3. (B) ATP causes dose-dependent prevention of the inhibitory action of 1 mM GSSG when ATP and GSSG are simultaneously present in the incubation medium. The data is represented as mean values ± s.d. n=3. (C) Inhibitory effect of
S-glutathionylation on the ADP binding to Na,K-ATPase. An original ITC recording (upper panel) and binding isotherms (lower panel) of the Na,K-ATPase interaction with ADP in the presence of DTT (100 μM, black) or GSSG (1 mM, red) at 25 °C. (D) Localization of S-glutathionylation sites on the α1 subunit. Membrane domains of the α1 subunit are shown as barrels numbered as M1–M10. Cytosolic or extracellular domains are shown as lines, where ouabain binding site is shown in blue and nucleotide binding domain in red. “C” and “N” indicate the C- and N-terminus. Cysteine residues are presented as filled circles with numbers corresponding to the duck/rabbit/rat α1 sequence. Cysteines, which undergo S-glutathionylation upon GSH/GSSG treatment, are shown in red. The Cys 236 absent in the α1 but present in the α2 isozyme is shown in green. The Cy residue absent in the α1 but present in the α2 isozyme is shown in green.

FIGURE 7. S-glutathionylation of the α subunit as a mechanism of regulation of the Na,K-ATPase. (A) A superimposition of the 3D structures of the nucleotide binding domain (Arg378–Arg589) with ATP (1) or glutathione (2) bound to Cys 452p, 456p, and 457p. Shown as a ribbon diagram is a model created on the basis of 3.5 Å structure of the porcine α1 subunit (PDB code 3b8e). The structural alignment was simulated with the program MOE. Glutathione is shown as a ball-and-stick representation, ATP is presented as a space-filling Van der Waals representation with atoms in standard colors for atom type (carbon: grey, oxygen: red, nitrogen: blue, sulfur: yellow, phosphorus: pink). The distance between the negatively charged phosphate ATP tail and the negatively charged carboxyl group of the glutathione bound to the Cys 452p is shown in green and is less than 8 Å. (B) Schematic representation of the regulatory S-glutathionylation of the Na,K-ATPase. The enzyme is shown in dynamic equilibrium between three distinct states: “turned on” (active, regulated), “turned off” (reversibly inhibited), “partially inhibited”. Transformation to the “unregulated” state is irreversible. Maximal activity of the enzyme may be achieved under the conditions supporting the optimal redox environment. Mild oxidation (GSSG accumulation coupled to ATP depletion or –SH to –SOH transformation of the cysteine residues in the “partially inhibited” mode) or GSH overload in the presence of GRX transfer the Na,K-ATPase from “turned-on” to the “turned-off” state in which the regulatory cysteines are S-glutathionylated. Severe oxidative stress causes oxidation of the SH-groups of the regulatory cysteines to –SO\textsubscript{2}H or –SO\textsubscript{3}H and thus turns the enzyme into the “unregulated” state, in which it is unable to respond to the changes in redox state and remains constantly active.

TABLE 1

MALDI-TOF-MS analysis of the glutathionylated Cys-containing peptides of α1 subunit of the Na,K-ATPase

<table>
<thead>
<tr>
<th>Cysteine number</th>
<th>Fragment/ type of fragment</th>
<th>Sequence</th>
<th>Experimental m/z</th>
<th>Calculated m/z for non-modified fragment</th>
<th>Calculated m/z for modified fragment</th>
<th>Cysteines modification</th>
<th>Rel. intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>GSH/ GSSG</td>
<td>Control</td>
<td>GSH/ GSSG</td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>194 – 207 Tryptic</td>
<td>IPADLRIISAHGCK</td>
<td>1798.82</td>
<td>1798.89</td>
<td>1493.82</td>
<td>1798.89</td>
<td>SG</td>
</tr>
<tr>
<td>244</td>
<td>236–250 Tryptic</td>
<td>NIAFFSTNCVEGTAR</td>
<td>1934.95</td>
<td>1934.86</td>
<td>1629.76</td>
<td>1934.84</td>
<td>SG</td>
</tr>
<tr>
<td>338, 351</td>
<td>336-353 Chymotryptic</td>
<td>TVCLLTAKRMARKNCLV</td>
<td>2326.19</td>
<td>2326.19</td>
<td>2021.14</td>
<td>2326.21</td>
<td>SG, SH</td>
</tr>
<tr>
<td>351, 369</td>
<td>350–372 Tryptic</td>
<td>NCLVKNLEAVTLGSTSTICSDK</td>
<td>3035.49</td>
<td>3035.48</td>
<td>2425.19</td>
<td>3035.33</td>
<td>SG, SG</td>
</tr>
<tr>
<td>454, 458, 459</td>
<td>454 – 468 Tryptic</td>
<td>CIECCGSVKEMRER</td>
<td>2671.20</td>
<td>2671.19</td>
<td>1755.79</td>
<td>2671.01</td>
<td>SG, SG, SG</td>
</tr>
<tr>
<td>458, 459</td>
<td>456 – 462 Chymotryptic</td>
<td>ELCCGSV</td>
<td>1015.34</td>
<td>1015.34</td>
<td>710.28</td>
<td>1015.35</td>
<td>SG, SH</td>
</tr>
<tr>
<td>513</td>
<td>502 – 516 Chymotryptic</td>
<td>MKGAPERILDRCSS1</td>
<td>1981.0</td>
<td>1981.01</td>
<td>1675.86</td>
<td>1980.93</td>
<td>SG</td>
</tr>
<tr>
<td>551</td>
<td>549 – 564 Chymotryptic</td>
<td>GFCHLALPDDQFPEGF</td>
<td>2097.96</td>
<td>2097.95</td>
<td>1792.79</td>
<td>2097.87</td>
<td>SG</td>
</tr>
<tr>
<td>658</td>
<td>640–660 Chymotryptic</td>
<td>AARLNIPVSQVNPRAKACVV</td>
<td>2526.24</td>
<td>2526.36</td>
<td>2221.22</td>
<td>2526.29</td>
<td>SG</td>
</tr>
<tr>
<td>700</td>
<td>694 – 702 Tryptic</td>
<td>LIIVEGCQR</td>
<td>1335.65</td>
<td>1335.65</td>
<td>1030.56</td>
<td>1335.64</td>
<td>SG</td>
</tr>
</tbody>
</table>
TABLE 1.
Na,K-ATPase isolated from duck salt glands was treated with a mixture of GSH (1.7 mM) and GSSG (170 μM) and the α1 subunit of the enzyme before (control, active enzyme), and after (GSH/GSSG, inactivated enzyme) treatment was subjected to either tryptic or chymotryptic digestion. The resulting fragments were analyzed by MALDI-TOF MS. Shown in the table are only the tryptic and chymotryptic fragments containing S-glutathionylated cysteine residues. Listed in the table are the experimental and calculated m/z ratio values (monoisotopic mass-to-charge ratio of the singly charged peptide ions) of the fragments. The calculated m/z values are for the fragments in which all cysteine residues are present in non-modified (reduced) form. Cysteine modification was assessed by comparison of the experimental m/z values with the calculated ones. Binding of glutathione (-SG) increases mass of the fragments by 305 Da. Peaks with maximal intensity were chosen as referent ones for analysis of tryptic and chymotriptic fragments. These peaks differed for tryptic and chymotryptic fragments. The same referent peaks were used for analysis of fragments obtained from control and GSH/GSSG treated samples. The peak intensity of the fragment normalized to intensity of the corresponding referent peak is presented in the table as relative intensity (Rel. intensity). Peak detection was made by the SNAP algorithm of the program Flex Analysis (Bruker Daltonics, Germany). Experiment has been repeated three times.
FIGURES

Figure 1

A

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>1 mM GSSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSS-α1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSS-α1 (fold change)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>1 mM GSSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSS-β1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSS-β1 (fold change)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSS-α1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTT</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>GSSG</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th></th>
<th>Norm</th>
<th>Hyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSS-α1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSS-α1 (fold change)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2

A

Na,K-ATPase activity (%)

0 20 40 60 80 100

0 5 10 15 20 25 30

Time (min)

B

$\ln \frac{A_t}{A_0}$

0.37

0.14

0 5 10 15 20 25 30

Time (min)
Figure 4

(A) GSSG concentration vs. Na,K-ATPase activity (%)

(B) Na,K-ATPase activity (μmol Pi/(mg x h)) for different storage conditions and oxygen levels.
Nucleotide binding domain
Ouabain binding
Cysteine residues
Cysteine residue specific for α2, absent in α1
Cysteine residues for which an increase in S-glutathionylation in GSH/GSSG-treated Na,K-ATPase samples was shown