Header

UZH-Logo

Maintenance Infos

Noncanonical Mismatch Repair as a Source of Genomic Instability in Human Cells


Peña-Diaz, Javier; Bregenhorn, Stephanie; Ghodgaonkar, Medini; Follonier, Cindy; Artola-Borán, Mariela; Castor, Dennis; Lopes, Massimo; Sartori, Alessandro A; Jiricny, Josef (2012). Noncanonical Mismatch Repair as a Source of Genomic Instability in Human Cells. Molecular Cell, 47(5):669-680.

Abstract

Mismatch repair (MMR) is a key antimutagenic process that increases the fidelity of DNA replication and recombination. Yet genetic experiments showed that MMR is required for antibody maturation, a process during which the immunoglobulin loci of antigen-stimulated B cells undergo extensive mutagenesis and rearrangements. In an attempt to elucidate the mechanism underlying the latter events, we set out to search for conditions that compromise MMR fidelity. Here, we describe noncanonical MMR (ncMMR), a process in which the MMR pathway is activated by various DNA lesions rather than by mispairs. ncMMR is largely independent of DNA replication, lacks strand directionality, triggers PCNA monoubiquitylation, and promotes recruitment of the error-prone polymerase-η to chromatin. Importantly, ncMMR is not limited to B cells but occurs also in other cell types. Moreover, it contributes to mutagenesis induced by alkylating agents. Activation of ncMMR may therefore play a role in genomic instability and cancer.

Abstract

Mismatch repair (MMR) is a key antimutagenic process that increases the fidelity of DNA replication and recombination. Yet genetic experiments showed that MMR is required for antibody maturation, a process during which the immunoglobulin loci of antigen-stimulated B cells undergo extensive mutagenesis and rearrangements. In an attempt to elucidate the mechanism underlying the latter events, we set out to search for conditions that compromise MMR fidelity. Here, we describe noncanonical MMR (ncMMR), a process in which the MMR pathway is activated by various DNA lesions rather than by mispairs. ncMMR is largely independent of DNA replication, lacks strand directionality, triggers PCNA monoubiquitylation, and promotes recruitment of the error-prone polymerase-η to chromatin. Importantly, ncMMR is not limited to B cells but occurs also in other cell types. Moreover, it contributes to mutagenesis induced by alkylating agents. Activation of ncMMR may therefore play a role in genomic instability and cancer.

Statistics

Citations

Dimensions.ai Metrics
59 citations in Web of Science®
65 citations in Scopus®
66 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 07 Aug 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:07 Aug 2012 14:25
Last Modified:16 Feb 2018 23:40
Publisher:Elsevier
ISSN:1097-2765
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.molcel.2012.07.006
PubMed ID:22864113

Download