Header

UZH-Logo

Maintenance Infos

Model uncertainty in ancestral area reconstruction: a parsimonious solution?


Pirie, Micheal D; Humphreys, Aelys M; Antonelli, Alexandre; Galley, Chloé; Linder, Peter H (2012). Model uncertainty in ancestral area reconstruction: a parsimonious solution? Taxon, 61(3):652-664.

Abstract

Increasingly complex likelihood-based methods are being developed to infer biogeographic history. The results of these methods are highly dependent on the underlying model which should be appropriate for the scenario under investigation. Our example concerns the dispersal among the southern continents of the grass subfamily Danthonioideae (Poaceae). We infer ancestral areas and dispersals using likelihood-based Bayesian methods and show the results to be indecisive (reversible-jump Markov chain Monte Carlo; RJ-MCMC) or contradictory (continuous-time Markov chain with Bayesian stochastic search variable selection; BSSVS) compared to those obtained under Fitch parsimony (FP), in which the number of dispersals is minimised. The RJ-MCMC and BSSVS results differed because of the differing (and not equally appropriate) treatments of model uncertainty under these methods. Such uncertainty may be unavoidable when attempting to infer a complex likelihood model with limited data, but we show with simulated data that it is not necessarily a meaningful reflection of the credibility of a result. At higher overall rates of dispersal FP does become increasingly inaccurate. However, at and below the rate observed in Danthonioideae multiple dispersals along branches are not observed and the correct root state can be inferred reliably. Under these conditions parsimony is a more appropriate model.

Abstract

Increasingly complex likelihood-based methods are being developed to infer biogeographic history. The results of these methods are highly dependent on the underlying model which should be appropriate for the scenario under investigation. Our example concerns the dispersal among the southern continents of the grass subfamily Danthonioideae (Poaceae). We infer ancestral areas and dispersals using likelihood-based Bayesian methods and show the results to be indecisive (reversible-jump Markov chain Monte Carlo; RJ-MCMC) or contradictory (continuous-time Markov chain with Bayesian stochastic search variable selection; BSSVS) compared to those obtained under Fitch parsimony (FP), in which the number of dispersals is minimised. The RJ-MCMC and BSSVS results differed because of the differing (and not equally appropriate) treatments of model uncertainty under these methods. Such uncertainty may be unavoidable when attempting to infer a complex likelihood model with limited data, but we show with simulated data that it is not necessarily a meaningful reflection of the credibility of a result. At higher overall rates of dispersal FP does become increasingly inaccurate. However, at and below the rate observed in Danthonioideae multiple dispersals along branches are not observed and the correct root state can be inferred reliably. Under these conditions parsimony is a more appropriate model.

Statistics

Citations

19 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Downloads

0 downloads since deposited on 03 Sep 2012
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Systematic and Evolutionary Botany
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2012
Deposited On:03 Sep 2012 15:27
Last Modified:05 Apr 2016 15:57
Publisher:International Association for Plant Taxonomy
ISSN:0040-0262

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 746kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations