Header

UZH-Logo

Maintenance Infos

Glutamine supplementation in a child with inherited GS deficiency improves the clinical status and partially corrects the peripheral and central amino acid imbalance


Haeberle, Johannes; Shahbeck, Noora; Ibrahim, Khalid; Schmitt, Bernhard; Scheer, Ianina; O'Gorman, Ruth; Chaudhry, Farrukh A; Ben-Omran, Tawfeg (2012). Glutamine supplementation in a child with inherited GS deficiency improves the clinical status and partially corrects the peripheral and central amino acid imbalance. Orphanet Journal of Rare Diseases, 7:48.

Abstract

Glutamine synthetase (GS) is ubiquitously expressed in mammalian organisms and is a key enzyme in nitrogen metabolism. It is the only known enzyme capable of synthesising glutamine, an amino acid with many critical roles in the human organism. A defect in GLUL, encoding for GS, leads to congenital systemic glutamine deficiency and has been described in three patients with epileptic encephalopathy. There is no established treatment for this condition. Here, we describe a therapeutic trial consisting of enteral and parenteral glutamine supplementation in a four year old patient with GS deficiency. The patient received increasing doses of glutamine up to 1020 mg/kg/day. The effect of this glutamine supplementation was monitored clinically, biochemically, and by studies of the electroencephalogram (EEG) as well as by brain magnetic resonance imaging and spectroscopy. Treatment was well tolerated and clinical monitoring showed improved alertness. Concentrations of plasma glutamine normalized while levels in cerebrospinal fluid increased but remained below the lower reference range. The EEG showed clear improvement and spectroscopy revealed increasing concentrations of glutamine and glutamate in brain tissue. Concomitantly, there was no worsening of pre-existing chronic hyperammonemia. In conclusion, supplementation of glutamine is a safe therapeutic option for inherited GS deficiency since it corrects the peripheral biochemical phenotype and partially also improves the central biochemical phenotype. There was some clinical improvement but the patient had a long standing severe encephalopathy. Earlier supplementation with glutamine might have prevented some of the neuronal damage.

Abstract

Glutamine synthetase (GS) is ubiquitously expressed in mammalian organisms and is a key enzyme in nitrogen metabolism. It is the only known enzyme capable of synthesising glutamine, an amino acid with many critical roles in the human organism. A defect in GLUL, encoding for GS, leads to congenital systemic glutamine deficiency and has been described in three patients with epileptic encephalopathy. There is no established treatment for this condition. Here, we describe a therapeutic trial consisting of enteral and parenteral glutamine supplementation in a four year old patient with GS deficiency. The patient received increasing doses of glutamine up to 1020 mg/kg/day. The effect of this glutamine supplementation was monitored clinically, biochemically, and by studies of the electroencephalogram (EEG) as well as by brain magnetic resonance imaging and spectroscopy. Treatment was well tolerated and clinical monitoring showed improved alertness. Concentrations of plasma glutamine normalized while levels in cerebrospinal fluid increased but remained below the lower reference range. The EEG showed clear improvement and spectroscopy revealed increasing concentrations of glutamine and glutamate in brain tissue. Concomitantly, there was no worsening of pre-existing chronic hyperammonemia. In conclusion, supplementation of glutamine is a safe therapeutic option for inherited GS deficiency since it corrects the peripheral biochemical phenotype and partially also improves the central biochemical phenotype. There was some clinical improvement but the patient had a long standing severe encephalopathy. Earlier supplementation with glutamine might have prevented some of the neuronal damage.

Statistics

Citations

12 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

87 downloads since deposited on 04 Dec 2012
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:July 2012
Deposited On:04 Dec 2012 13:36
Last Modified:07 Aug 2017 00:56
Publisher:BioMed Central
ISSN:1750-1172
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1750-1172-7-48
PubMed ID:22830360

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 7MB
View at publisher
Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations