Header

UZH-Logo

Maintenance Infos

Rapid exchange of metal between Zn(7)-metallothionein-3 and amyloid-β peptide promotes amyloid-related structural changes


Pedersen, Jeppe T; Hureau, Christelle; Hemmingsen, Lars; Heegaard, Niels H H; Østergaard, Jesper; Vašák, Milan; Faller, Peter (2012). Rapid exchange of metal between Zn(7)-metallothionein-3 and amyloid-β peptide promotes amyloid-related structural changes. Biochemistry, 51(8):1697-1706.

Abstract

Metal ions, especially Zn(2+) and Cu(2+), are implemented in the neuropathogenesis of Alzheimer's disease (AD) by modulating the aggregation of amyloid-β peptides (Aβ). Also, Cu(2+) may promote AD neurotoxicity through production of reactive oxygen species (ROS). Impaired metal ion homeostasis is most likely the underlying cause of aberrant metal-Aβ interaction. Thus, focusing on the body's natural protective mechanisms is an attractive therapeutic strategy for AD. The metalloprotein metallothionein-3 (MT-3) prevents Cu-Aβ-mediated cytotoxicity by a Zn-Cu exchange that terminates ROS production. Key questions about the metal exchange mechanisms remain unanswered, e.g., whether an Aβ-metal-MT-3 complex is formed. We studied the exchange of metal between Aβ and Zn(7)-MT-3 by a combination of spectroscopy (absorption, fluorescence, thioflavin T assay, and nuclear magnetic resonance) and transmission electron microscopy. We found that the metal exchange occurs via free Cu(2+) and that an Aβ-metal-MT-3 complex is not formed. This means that the metal exchange does not require specific recognition between Aβ and Zn(7)-MT-3. Also, we found that the metal exchange caused amyloid-related structural and morphological changes in the resulting Zn-Aβ aggregates. A detailed model of the metal exchange mechanism is presented. This model could potentially be important in developing therapeutics with metal-protein attenuating properties in AD.

Abstract

Metal ions, especially Zn(2+) and Cu(2+), are implemented in the neuropathogenesis of Alzheimer's disease (AD) by modulating the aggregation of amyloid-β peptides (Aβ). Also, Cu(2+) may promote AD neurotoxicity through production of reactive oxygen species (ROS). Impaired metal ion homeostasis is most likely the underlying cause of aberrant metal-Aβ interaction. Thus, focusing on the body's natural protective mechanisms is an attractive therapeutic strategy for AD. The metalloprotein metallothionein-3 (MT-3) prevents Cu-Aβ-mediated cytotoxicity by a Zn-Cu exchange that terminates ROS production. Key questions about the metal exchange mechanisms remain unanswered, e.g., whether an Aβ-metal-MT-3 complex is formed. We studied the exchange of metal between Aβ and Zn(7)-MT-3 by a combination of spectroscopy (absorption, fluorescence, thioflavin T assay, and nuclear magnetic resonance) and transmission electron microscopy. We found that the metal exchange occurs via free Cu(2+) and that an Aβ-metal-MT-3 complex is not formed. This means that the metal exchange does not require specific recognition between Aβ and Zn(7)-MT-3. Also, we found that the metal exchange caused amyloid-related structural and morphological changes in the resulting Zn-Aβ aggregates. A detailed model of the metal exchange mechanism is presented. This model could potentially be important in developing therapeutics with metal-protein attenuating properties in AD.

Statistics

Citations

30 citations in Web of Science®
31 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 09 Oct 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:09 Oct 2012 15:50
Last Modified:05 Apr 2016 15:59
Publisher:American Chemical Society
ISSN:0006-2960
Publisher DOI:https://doi.org/10.1021/bi201774z
PubMed ID:22283439

Download