Header

UZH-Logo

Maintenance Infos

Projection structure of the secondary citrate/sodium symporter CitS at 6 Å resolution by electron crystallography


Kebbel, Fabian; Kurz, Mareike; Grütter, Markus G; Stahlberg, Henning (2012). Projection structure of the secondary citrate/sodium symporter CitS at 6 Å resolution by electron crystallography. Journal of Molecular Biology, 418(1-2):117-126.

Abstract

CitS from Klebsiella pneumoniae acts as a secondary symporter of citrate and sodium ions across the inner membrane of the host. The protein is the best characterized member of the 2-hydroxycarboxylate transporter family, while no experimental structural information at sub-nanometer resolution is available on this class of membrane proteins. Here, we applied electron crystallography to two-dimensional crystals of CitS. Carbon-film-adsorbed tubular two-dimensional crystals were studied by cryo-electron microscopy, producing the 6-Å-resolution projection structure of the membrane-embedded protein. In the p22(1)2(1)-symmetrized projection map, the predicted dimeric structure is clearly visible. Each monomeric unit can tentatively be interpreted as being composed of 11 transmembrane α-helices. In projection, CitS shows a high degree of structural similarity to NhaP1, the Na(+)/H(+) antiporter of Methanococcus jannaschii. We discuss possible locations for the dimer interface and models for the helical arrangements and domain organizations of the symporter based on existing models.

Abstract

CitS from Klebsiella pneumoniae acts as a secondary symporter of citrate and sodium ions across the inner membrane of the host. The protein is the best characterized member of the 2-hydroxycarboxylate transporter family, while no experimental structural information at sub-nanometer resolution is available on this class of membrane proteins. Here, we applied electron crystallography to two-dimensional crystals of CitS. Carbon-film-adsorbed tubular two-dimensional crystals were studied by cryo-electron microscopy, producing the 6-Å-resolution projection structure of the membrane-embedded protein. In the p22(1)2(1)-symmetrized projection map, the predicted dimeric structure is clearly visible. Each monomeric unit can tentatively be interpreted as being composed of 11 transmembrane α-helices. In projection, CitS shows a high degree of structural similarity to NhaP1, the Na(+)/H(+) antiporter of Methanococcus jannaschii. We discuss possible locations for the dimer interface and models for the helical arrangements and domain organizations of the symporter based on existing models.

Statistics

Citations

3 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 11 Oct 2012
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:11 Oct 2012 06:54
Last Modified:05 Apr 2016 15:59
Publisher:Elsevier
ISSN:0022-2836
Publisher DOI:https://doi.org/10.1016/j.jmb.2012.02.016
PubMed ID:22349493

Download

Preview Icon on Download
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations