Header

UZH-Logo

Maintenance Infos

Ultrametricity in Protein Folding Dynamics


Scalco, Riccardo; Caflisch, Amedeo (2012). Ultrametricity in Protein Folding Dynamics. Journal of Chemical Theory and Computation, 8(5):1580-1588.

Abstract

The free energy of the transition state (TS) between two nodes of an ergodic Markov state model (MSM) can be obtained from the minimum cut, which is the set of edges that has the smallest sum of the flow capacities among all the possible cuts separating the two nodes. Here, we first show that the free energy of the TS is an ultrametric distance. The ultrametric property offers a way to simplify the MSM in a small number of states and, as a consequence, meaningful rate constants (free energy barriers) for the simplified MSM can be defined. We also present a new definition of the cut-based free energy profile (cbFEP), which is useful to check for the existence of a state for which the equilibration is much faster than the time to escape from it. From our analysis, a parallelism emerges between the minimum cut (maximum flow), and transition state theory (TST) or Kramers’ theory.

Abstract

The free energy of the transition state (TS) between two nodes of an ergodic Markov state model (MSM) can be obtained from the minimum cut, which is the set of edges that has the smallest sum of the flow capacities among all the possible cuts separating the two nodes. Here, we first show that the free energy of the TS is an ultrametric distance. The ultrametric property offers a way to simplify the MSM in a small number of states and, as a consequence, meaningful rate constants (free energy barriers) for the simplified MSM can be defined. We also present a new definition of the cut-based free energy profile (cbFEP), which is useful to check for the existence of a state for which the equilibration is much faster than the time to escape from it. From our analysis, a parallelism emerges between the minimum cut (maximum flow), and transition state theory (TST) or Kramers’ theory.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 09 Nov 2012
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:09 Nov 2012 09:13
Last Modified:05 Apr 2016 15:59
Publisher:American Chemical Society
ISSN:1549-9618
Publisher DOI:https://doi.org/10.1021/ct3000052

Download