Header

UZH-Logo

Maintenance Infos

Extracellular factors and immunosuppressive drugs influencing insulin secretion of murine islets - Zurich Open Repository and Archive


Auer, V J; Janas, E; Ninichuk, V; Eppler, E; Weiss, T S; Kirchner, S; Otto, A M; Stangl, M J (2012). Extracellular factors and immunosuppressive drugs influencing insulin secretion of murine islets. Clinical and Experimental Immunology, 170(2):238-247.

Abstract

Approximately 60% of transplanted islets undergo apoptosis within the first week post-transplantation into the liver attributed to poor engraftment, immune rejection and toxicity of immunosuppressive drugs. Understanding how extracellular matrix (ECM) components, immunosuppressive drugs and proinflammatory cytokines affect insulin secretion will contribute to an improved clinical outcome of islet transplantations. In this study, functional activity of isolated murine islets was measured by glucose-stimulated insulin secretion (GSIS) and by electrophysiological measurements using patch-clamp. Cultivating islets with soluble fibronectin or laminin, as opposed to with coated laminin, markedly increased GSIS. Addition of cyclosporin A reduced GSIS and suppressed glucose-induced spike activity. Tacrolimus affected neither GSIS nor spike activity, indicating a different mechanism. To evaluate the influence of proinflammatory cytokines, islets were incubated with interleukin (IL)-1β, tumour necrosis factor (TNF)-α or with supernatants from cultured Kupffer cells, the main mediators of inflammation in the hepatic sinusoids. IL-1β exerted a bimodal effect on insulin secretion, stimulating below 2 ng/ml and suppressing above 10 ng/ml. Soluble laminin in combination with a stimulatory IL-1β concentration further increased insulin secretion by 20% compared to IL-1β alone, while with high IL-1β concentrations soluble laminin slightly attenuated GSIS inhibition. TNF-α alone did not affect GSIS, but with stimulatory IL-1β concentrations completely abolished it. Similarly, supernatants derived from Kupffer cells exerted a bimodal effect on GSIS. Our data suggest that improved insulin secretion of transplanted islets could be achieved by including soluble laminin and low IL-1β concentrations in the islet cultivation medium, and by a simultaneous inhibition of cytokine secretion from Kupffer cells.

Abstract

Approximately 60% of transplanted islets undergo apoptosis within the first week post-transplantation into the liver attributed to poor engraftment, immune rejection and toxicity of immunosuppressive drugs. Understanding how extracellular matrix (ECM) components, immunosuppressive drugs and proinflammatory cytokines affect insulin secretion will contribute to an improved clinical outcome of islet transplantations. In this study, functional activity of isolated murine islets was measured by glucose-stimulated insulin secretion (GSIS) and by electrophysiological measurements using patch-clamp. Cultivating islets with soluble fibronectin or laminin, as opposed to with coated laminin, markedly increased GSIS. Addition of cyclosporin A reduced GSIS and suppressed glucose-induced spike activity. Tacrolimus affected neither GSIS nor spike activity, indicating a different mechanism. To evaluate the influence of proinflammatory cytokines, islets were incubated with interleukin (IL)-1β, tumour necrosis factor (TNF)-α or with supernatants from cultured Kupffer cells, the main mediators of inflammation in the hepatic sinusoids. IL-1β exerted a bimodal effect on insulin secretion, stimulating below 2 ng/ml and suppressing above 10 ng/ml. Soluble laminin in combination with a stimulatory IL-1β concentration further increased insulin secretion by 20% compared to IL-1β alone, while with high IL-1β concentrations soluble laminin slightly attenuated GSIS inhibition. TNF-α alone did not affect GSIS, but with stimulatory IL-1β concentrations completely abolished it. Similarly, supernatants derived from Kupffer cells exerted a bimodal effect on GSIS. Our data suggest that improved insulin secretion of transplanted islets could be achieved by including soluble laminin and low IL-1β concentrations in the islet cultivation medium, and by a simultaneous inhibition of cytokine secretion from Kupffer cells.

Citations

5 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:18 Oct 2012 07:32
Last Modified:05 Apr 2016 15:59
Publisher:Wiley-Blackwell
ISSN:0009-9104
Publisher DOI:https://doi.org/10.1111/j.1365-2249.2012.04645.x
PubMed ID:23039895

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations