Header

UZH-Logo

Maintenance Infos

Whole genome and transcriptome amplification: practicable tools for sustainable tissue biobanking?


von Teichman, Adriana; Storz, Martina; Dettwiler, Susanne; Moch, Holger; Schraml, Peter (2012). Whole genome and transcriptome amplification: practicable tools for sustainable tissue biobanking? Virchows Archiv, 461(5):571-580.

Abstract

The use of whole genome amplification (WGA) and whole transcriptome amplification (WTA) techniques enables the enrichment of DNA and RNA from very small amounts of tissue. Here, we tested the suitability of WGA and WTA for tumor tissue biobanking. DNA and RNA from 13 standardized and seven non-standardized frozen and 12 formalin-fixed, paraffin-embedded (FFPE) clear cell renal cell carcinoma specimens (>9 years old) served to test the robustness of the WGA and WTA products by reidentifying von Hippel-Lindau (VHL) gene mutations known to exist in these samples. The enrichment of DNA and RNA from frozen tissue was up to 1,291-fold and 423-fold, respectively. The sizes and yields (10- to 73-fold) of the amplified DNA obtained from the 12 FFPE samples were generally lower. The quality of the RNA from the FFPE samples was too low to reliably perform WTA. Our results demonstrate that frozen tumor tissue is very suitable for WGA and WTA. All 20 VHL mutations were verified with WGA. Notably, we were able to show that 18 of the 20 (90 %) VHL mutations are also transcribed. In FFPE tumor tissue, 8 of 12 cases (67 %) showed the expected mutations after the first WGA. Accurate WTA with FFPE material is sophisticated and strongly depends on the modification and degradation status of the fixed tissue. We conclude that for sustainable tissue biobanking, the use of WGA and WTA is a unique opportunity to provide researchers with sufficient amounts of nucleic acids, preferably from limited frozen tissue material.

Abstract

The use of whole genome amplification (WGA) and whole transcriptome amplification (WTA) techniques enables the enrichment of DNA and RNA from very small amounts of tissue. Here, we tested the suitability of WGA and WTA for tumor tissue biobanking. DNA and RNA from 13 standardized and seven non-standardized frozen and 12 formalin-fixed, paraffin-embedded (FFPE) clear cell renal cell carcinoma specimens (>9 years old) served to test the robustness of the WGA and WTA products by reidentifying von Hippel-Lindau (VHL) gene mutations known to exist in these samples. The enrichment of DNA and RNA from frozen tissue was up to 1,291-fold and 423-fold, respectively. The sizes and yields (10- to 73-fold) of the amplified DNA obtained from the 12 FFPE samples were generally lower. The quality of the RNA from the FFPE samples was too low to reliably perform WTA. Our results demonstrate that frozen tumor tissue is very suitable for WGA and WTA. All 20 VHL mutations were verified with WGA. Notably, we were able to show that 18 of the 20 (90 %) VHL mutations are also transcribed. In FFPE tumor tissue, 8 of 12 cases (67 %) showed the expected mutations after the first WGA. Accurate WTA with FFPE material is sophisticated and strongly depends on the modification and degradation status of the fixed tissue. We conclude that for sustainable tissue biobanking, the use of WGA and WTA is a unique opportunity to provide researchers with sufficient amounts of nucleic acids, preferably from limited frozen tissue material.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
2 citations in Scopus®
4 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 18 Oct 2012
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Pathology and Molecular Pathology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2012
Deposited On:18 Oct 2012 06:14
Last Modified:16 Feb 2018 23:56
Publisher:Springer
ISSN:0945-6317
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s00428-012-1315-y
PubMed ID:23007645

Download