Header

UZH-Logo

Maintenance Infos

Improving PolSAR land cover classification with radiometric correction of the coherency matrix


Atwood, Donald K; Small, David; Gens, Rüdiger (2012). Improving PolSAR land cover classification with radiometric correction of the coherency matrix. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(3):848-856.

Abstract

The brightness of a SAR image is affected by topography due to varying projection between ground and image coordinates. For polarimetric SAR (PolSAR) imagery being used for purposes of land cover classification, this radiometric variability is shown to affect the outcome of a Wishart unsupervised classification in areas of moderate topography. The intent of this paper is to investigate the impact of applying a radiometric correction to the PolSAR coherency matrix for a region of boreal forest in interior Alaska. The gamma naught radiometric correction estimates the local illuminated area at each grid point in the radar geometry. Then, each element of the coherency matrix is divided by the local area to produce a polarimetric product that is radiometrically “flat.” This paper follows two paths, one with and one without radiometric correction, to investigate the impact upon classification accuracy. Using a Landsat-derived land cover reference, the radiometric correction is shown to bring about significant qualitative and quantitative improvements in the land cover map. Confusion matrix analysis confirms the accuracy for most classes and shows a 15% improvement in the classification of the deciduous forest class.

Abstract

The brightness of a SAR image is affected by topography due to varying projection between ground and image coordinates. For polarimetric SAR (PolSAR) imagery being used for purposes of land cover classification, this radiometric variability is shown to affect the outcome of a Wishart unsupervised classification in areas of moderate topography. The intent of this paper is to investigate the impact of applying a radiometric correction to the PolSAR coherency matrix for a region of boreal forest in interior Alaska. The gamma naught radiometric correction estimates the local illuminated area at each grid point in the radar geometry. Then, each element of the coherency matrix is divided by the local area to produce a polarimetric product that is radiometrically “flat.” This paper follows two paths, one with and one without radiometric correction, to investigate the impact upon classification accuracy. Using a Landsat-derived land cover reference, the radiometric correction is shown to bring about significant qualitative and quantitative improvements in the land cover map. Confusion matrix analysis confirms the accuracy for most classes and shows a 15% improvement in the classification of the deciduous forest class.

Statistics

Citations

16 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 01 Nov 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2012
Deposited On:01 Nov 2012 10:12
Last Modified:07 Dec 2017 15:51
Publisher:IEEE
ISSN:1939-1404
Publisher DOI:https://doi.org/10.1109/JSTARS.2012.2186791

Download