Header

UZH-Logo

Maintenance Infos

Improving PolSAR land cover classification with radiometric correction of the coherency matrix


Atwood, Donald K; Small, David; Gens, Rüdiger (2012). Improving PolSAR land cover classification with radiometric correction of the coherency matrix. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(3):848-856.

Abstract

The brightness of a SAR image is affected by topography due to varying projection between ground and image coordinates. For polarimetric SAR (PolSAR) imagery being used for purposes of land cover classification, this radiometric variability is shown to affect the outcome of a Wishart unsupervised classification in areas of moderate topography. The intent of this paper is to investigate the impact of applying a radiometric correction to the PolSAR coherency matrix for a region of boreal forest in interior Alaska. The gamma naught radiometric correction estimates the local illuminated area at each grid point in the radar geometry. Then, each element of the coherency matrix is divided by the local area to produce a polarimetric product that is radiometrically “flat.” This paper follows two paths, one with and one without radiometric correction, to investigate the impact upon classification accuracy. Using a Landsat-derived land cover reference, the radiometric correction is shown to bring about significant qualitative and quantitative improvements in the land cover map. Confusion matrix analysis confirms the accuracy for most classes and shows a 15% improvement in the classification of the deciduous forest class.

Abstract

The brightness of a SAR image is affected by topography due to varying projection between ground and image coordinates. For polarimetric SAR (PolSAR) imagery being used for purposes of land cover classification, this radiometric variability is shown to affect the outcome of a Wishart unsupervised classification in areas of moderate topography. The intent of this paper is to investigate the impact of applying a radiometric correction to the PolSAR coherency matrix for a region of boreal forest in interior Alaska. The gamma naught radiometric correction estimates the local illuminated area at each grid point in the radar geometry. Then, each element of the coherency matrix is divided by the local area to produce a polarimetric product that is radiometrically “flat.” This paper follows two paths, one with and one without radiometric correction, to investigate the impact upon classification accuracy. Using a Landsat-derived land cover reference, the radiometric correction is shown to bring about significant qualitative and quantitative improvements in the land cover map. Confusion matrix analysis confirms the accuracy for most classes and shows a 15% improvement in the classification of the deciduous forest class.

Statistics

Citations

15 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 01 Nov 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2012
Deposited On:01 Nov 2012 10:12
Last Modified:05 Apr 2016 16:02
Publisher:IEEE
ISSN:1939-1404
Publisher DOI:https://doi.org/10.1109/JSTARS.2012.2186791

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations