Header

UZH-Logo

Maintenance Infos

Structural and physiological phenotypes of disease-linked lamin mutations in C. elegans


Bank, Erin M; Ben-Harush, Kfir; Feinstein, Naomi; Medalia, Ohad; Gruenbaum, Yosef (2012). Structural and physiological phenotypes of disease-linked lamin mutations in C. elegans. Journal of Structural Biology, 177(1):106-112.

Abstract

The nuclear lamina is a major structural element of the nucleus and is predominately composed of the intermediate filament lamin proteins. Missense mutations in the human lamins A/C cause a family of laminopathic diseases, with no known mechanistic link between the position of the mutation and the resulting disease phenotypes. The Caenorhabditis elegans lamin (Ce-lamin) is structurally and functionally homologous to human lamins, and recent advances have allowed detailed structural analysis of Ce-lamin filaments both in vitro and in vivo. Here, we studied the effect of laminopathic mutations on Ce-lamin filament assembly in vitro and the corresponding physiological phenotypes in animals. We focused on three disease-linked mutations, Q159K, T164P, and L535P, which have previously been shown to affect lamin structure and nuclear localization. Mutations prevented the proper assembly of Ce-lamin into filament and/or paracrystalline arrays. Disease-like phenotypes were observed in strains expressing low levels of these mutant lamins, including decreased fertility and motility coincident with muscle lesions. In addition, the Q159K- and T164P-expressing strains showed a reduced lifespan. Thus, different disease-linked mutations in Ce-lamin exhibit major effects in vivo and in vitro. Using C. elegans as a model system, a comprehensive analysis of the effects of specific lamin mutations from the level of in vitro filament assembly to the physiology of the organism will help uncover the mechanistic differences between these different lamin mutations.

Abstract

The nuclear lamina is a major structural element of the nucleus and is predominately composed of the intermediate filament lamin proteins. Missense mutations in the human lamins A/C cause a family of laminopathic diseases, with no known mechanistic link between the position of the mutation and the resulting disease phenotypes. The Caenorhabditis elegans lamin (Ce-lamin) is structurally and functionally homologous to human lamins, and recent advances have allowed detailed structural analysis of Ce-lamin filaments both in vitro and in vivo. Here, we studied the effect of laminopathic mutations on Ce-lamin filament assembly in vitro and the corresponding physiological phenotypes in animals. We focused on three disease-linked mutations, Q159K, T164P, and L535P, which have previously been shown to affect lamin structure and nuclear localization. Mutations prevented the proper assembly of Ce-lamin into filament and/or paracrystalline arrays. Disease-like phenotypes were observed in strains expressing low levels of these mutant lamins, including decreased fertility and motility coincident with muscle lesions. In addition, the Q159K- and T164P-expressing strains showed a reduced lifespan. Thus, different disease-linked mutations in Ce-lamin exhibit major effects in vivo and in vitro. Using C. elegans as a model system, a comprehensive analysis of the effects of specific lamin mutations from the level of in vitro filament assembly to the physiology of the organism will help uncover the mechanistic differences between these different lamin mutations.

Statistics

Citations

12 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 30 Oct 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:30 Oct 2012 16:19
Last Modified:05 Apr 2016 16:02
Publisher:Elsevier
ISSN:1047-8477
Publisher DOI:https://doi.org/10.1016/j.jsb.2011.10.009
PubMed ID:22079399

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 971kB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations