Header

UZH-Logo

Maintenance Infos

TopoSUB: a tool for efficient large area numerical modelling in complex topography at sub-grid scales


Fiddes, Joel; Gruber, Stephan (2012). TopoSUB: a tool for efficient large area numerical modelling in complex topography at sub-grid scales. Geoscientific Model Development, 5(5):1245-1257.

Abstract

Mountain regions are highly sensitive to global climate change. However, large scale assessments of mountain environments remain problematic due to the high resolution required of model grids to capture strong lateral variability. To alleviate this, tools are required to bridge the scale gap between gridded climate datasets (climate models and reanalyses) and mountain topography. We address this problem with a sub-grid method. It relies on sampling the most important aspects of land surface heterogeneity through a lumped scheme, allowing for the application of numerical land surface models (LSMs) over large areas in mountain regions or other heterogeneous environments. This is achieved by including the effect of mountain topography on these processes at the sub-grid scale using a multidimensional informed sampling procedure together with a 1-D lumped model that can be driven by gridded climate datasets. This paper provides a description of this sub-grid scheme, TopoSUB, and assesses its performance against a distributed model. We demonstrate the ability of TopoSUB to approximate results simulated by a distributed numerical LSM at around 104 less computa- tions. These significant gains in computing resources allow for: (1) numerical modelling of processes at fine grid resolutions over large areas; (2) efficient statistical descriptions of sub-grid behaviour; (3) a “sub-grid aware” aggregation of simulated variables to coarse grids; and (4) freeing of resources for computationally intensive tasks, e.g., the treatment of uncertainty in the modelling process.

Abstract

Mountain regions are highly sensitive to global climate change. However, large scale assessments of mountain environments remain problematic due to the high resolution required of model grids to capture strong lateral variability. To alleviate this, tools are required to bridge the scale gap between gridded climate datasets (climate models and reanalyses) and mountain topography. We address this problem with a sub-grid method. It relies on sampling the most important aspects of land surface heterogeneity through a lumped scheme, allowing for the application of numerical land surface models (LSMs) over large areas in mountain regions or other heterogeneous environments. This is achieved by including the effect of mountain topography on these processes at the sub-grid scale using a multidimensional informed sampling procedure together with a 1-D lumped model that can be driven by gridded climate datasets. This paper provides a description of this sub-grid scheme, TopoSUB, and assesses its performance against a distributed model. We demonstrate the ability of TopoSUB to approximate results simulated by a distributed numerical LSM at around 104 less computa- tions. These significant gains in computing resources allow for: (1) numerical modelling of processes at fine grid resolutions over large areas; (2) efficient statistical descriptions of sub-grid behaviour; (3) a “sub-grid aware” aggregation of simulated variables to coarse grids; and (4) freeing of resources for computationally intensive tasks, e.g., the treatment of uncertainty in the modelling process.

Statistics

Citations

13 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

52 downloads since deposited on 09 Nov 2012
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2012
Deposited On:09 Nov 2012 11:38
Last Modified:05 Apr 2016 16:03
Publisher:Copernicus Publications
ISSN:1991-9603
Publisher DOI:https://doi.org/10.5194/gmd-5-1245-2012

Download

Download PDF  'TopoSUB: a tool for efficient large area numerical modelling in complex topography at sub-grid scales'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 2MB
View at publisher