Header

UZH-Logo

Maintenance Infos

Rapid transformation of inorganic to organic and plant available phosphorous in soils of a glacier forefield


Egli, Markus; Filip, Damien; Mavris, Christian; Fischer, Benjamin; Götze, Jens; Raimondi, Salvatore; Seibert, Jan (2012). Rapid transformation of inorganic to organic and plant available phosphorous in soils of a glacier forefield. Geoderma, 189-190:215-226.

Abstract

Chemical weathering of rocks or sediments is extremely important for the generation of soils, for the evolution of landscape, and as a main source of inorganic nutrients for plant growth and therefore for life. Temporal trends in weathering mechanisms, plant succession and nutrients availability in cold environments can be successfully studied in soil chronosequences along a glacier forefield. In the present paper, this was carried out in the pro-glacial area of Morteratsch. Different forms of phosphorous in the soil, stream and spring water chemistry were investigated. Apatite constitutes the main source of P, but it occurs only as a minor accessory mineral phase in the granitic/gneiss parent material. The identification of apatite was performed using SEM-EDX and cathodoluminescence. Water chemistry data indicated some calcite dissolution at the earliest phase of exposure, pyrite and — on older surfaces increasingly — feldspar weathering. Apatite also seemed to contribute to Ca which is leached from the soils. The concentrations of dissolved P in the stream and spring waters were, however, extremely low (only a few μg P/l). In the topsoil, the total stocks of P showed a slight decrease with time. Losses were rather difficult to detect even though the water fluxes through the soils and discharges are relatively high. Soil organic P is almost identical to the EDTA-extractable fraction. In an 11.5 ky-old soil outside the glacier forefield the concentration and proportions of organic P, EDTA-extractable P and inorganic P forms did not differ that much from the oldest soils (max. 150 years) of the glacier forefield. In the bulk soil, about 78% of total P was transformed into an organic form (40% already after 150 years) and, in the fine earth, about 81% (40–70% after about 150 years of soil evolution). Thus the P transformation reactions are shown to be very rapid, occur predominantly in the early phase of soil formation, and could be best described by an exponential decay model.

Abstract

Chemical weathering of rocks or sediments is extremely important for the generation of soils, for the evolution of landscape, and as a main source of inorganic nutrients for plant growth and therefore for life. Temporal trends in weathering mechanisms, plant succession and nutrients availability in cold environments can be successfully studied in soil chronosequences along a glacier forefield. In the present paper, this was carried out in the pro-glacial area of Morteratsch. Different forms of phosphorous in the soil, stream and spring water chemistry were investigated. Apatite constitutes the main source of P, but it occurs only as a minor accessory mineral phase in the granitic/gneiss parent material. The identification of apatite was performed using SEM-EDX and cathodoluminescence. Water chemistry data indicated some calcite dissolution at the earliest phase of exposure, pyrite and — on older surfaces increasingly — feldspar weathering. Apatite also seemed to contribute to Ca which is leached from the soils. The concentrations of dissolved P in the stream and spring waters were, however, extremely low (only a few μg P/l). In the topsoil, the total stocks of P showed a slight decrease with time. Losses were rather difficult to detect even though the water fluxes through the soils and discharges are relatively high. Soil organic P is almost identical to the EDTA-extractable fraction. In an 11.5 ky-old soil outside the glacier forefield the concentration and proportions of organic P, EDTA-extractable P and inorganic P forms did not differ that much from the oldest soils (max. 150 years) of the glacier forefield. In the bulk soil, about 78% of total P was transformed into an organic form (40% already after 150 years) and, in the fine earth, about 81% (40–70% after about 150 years of soil evolution). Thus the P transformation reactions are shown to be very rapid, occur predominantly in the early phase of soil formation, and could be best described by an exponential decay model.

Statistics

Citations

7 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

55 downloads since deposited on 20 Nov 2012
16 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2012
Deposited On:20 Nov 2012 16:46
Last Modified:05 Apr 2016 16:06
Publisher:Elsevier
Series Name:Geoderma
ISSN:0016-7061
Publisher DOI:https://doi.org/10.1016/j.geoderma.2012.06.033

Download

Preview Icon on Download
Preview
Content: Accepted Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations