Header

UZH-Logo

Maintenance Infos

Rebuild, restore, reinnervate: do human tissue engineered dermo-epidermal skin analogs attract host nerve fibers for innervation?


Biedermann, Thomas; Böttcher-Haberzeth, Sophie; Klar, Agnieszka S; Pontiggia, Luca; Schiestl, Clemens; Meuli-Simmen, Claudia; Reichmann, Ernst; Meuli, Martin (2013). Rebuild, restore, reinnervate: do human tissue engineered dermo-epidermal skin analogs attract host nerve fibers for innervation? Pediatric Surgery International, 29(1):71-78.

Abstract

PURPOSE: Tissue engineered skin substitutes are a promising tool to cover large skin defects, but little is known about reinnervation of transplants. In this experimental study, we analyzed the ingrowth of host peripheral nerve fibers into human tissue engineered dermo-epidermal skin substitutes in a rat model. Using varying cell types in the epidermal compartment, we wanted to assess the influence of epidermal cell types on reinnervation of the substitute. METHODS: We isolated keratinocytes, melanocytes, fibroblasts, and eccrine sweat gland cells from human skin biopsies. After expansion, epidermal cells were seeded on human dermal fibroblast-containing collagen type I hydrogels as follows: (1) keratinocytes only, (2) keratinocytes with melanocytes, (3) sweat gland cells. These substitutes were transplanted into full-thickness skin wounds on the back of immuno-incompetent rats and were analyzed after 3 and 8 weeks. Histological sections were examined with regard to myelinated and unmyelinated nerve fiber ingrowth using markers such as PGP9.5, NF-200, and NF-145. RESULTS: After 3 weeks, the skin substitutes of all three epidermal cell variants showed no neuronal ingrowth from the host into the transplant. After 8 weeks, we could detect an innervation of all three types of skin substitutes. However, the nerve fibers were restricted to the dermal compartment and we could not find any unmyelinated fibers in the epidermis. Furthermore, there was no distinct difference between the constructs resulting from the different cell types used to generate an epidermis. CONCLUSION: Our human tissue engineered dermo-epidermal skin substitutes demonstrate a host-derived innervation of the dermal compartment as early as 8 weeks after transplantation. Thus, our substitutes apparently have the capacity to attract nerve fibers from adjacent host tissues, which also grow into grafts and thereby potentially restore skin sensitivity.

Abstract

PURPOSE: Tissue engineered skin substitutes are a promising tool to cover large skin defects, but little is known about reinnervation of transplants. In this experimental study, we analyzed the ingrowth of host peripheral nerve fibers into human tissue engineered dermo-epidermal skin substitutes in a rat model. Using varying cell types in the epidermal compartment, we wanted to assess the influence of epidermal cell types on reinnervation of the substitute. METHODS: We isolated keratinocytes, melanocytes, fibroblasts, and eccrine sweat gland cells from human skin biopsies. After expansion, epidermal cells were seeded on human dermal fibroblast-containing collagen type I hydrogels as follows: (1) keratinocytes only, (2) keratinocytes with melanocytes, (3) sweat gland cells. These substitutes were transplanted into full-thickness skin wounds on the back of immuno-incompetent rats and were analyzed after 3 and 8 weeks. Histological sections were examined with regard to myelinated and unmyelinated nerve fiber ingrowth using markers such as PGP9.5, NF-200, and NF-145. RESULTS: After 3 weeks, the skin substitutes of all three epidermal cell variants showed no neuronal ingrowth from the host into the transplant. After 8 weeks, we could detect an innervation of all three types of skin substitutes. However, the nerve fibers were restricted to the dermal compartment and we could not find any unmyelinated fibers in the epidermis. Furthermore, there was no distinct difference between the constructs resulting from the different cell types used to generate an epidermis. CONCLUSION: Our human tissue engineered dermo-epidermal skin substitutes demonstrate a host-derived innervation of the dermal compartment as early as 8 weeks after transplantation. Thus, our substitutes apparently have the capacity to attract nerve fibers from adjacent host tissues, which also grow into grafts and thereby potentially restore skin sensitivity.

Statistics

Citations

18 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 14 Dec 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Clinic for Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:14 Dec 2012 16:25
Last Modified:05 Apr 2016 16:06
Publisher:Springer
ISSN:0179-0358
Publisher DOI:https://doi.org/10.1007/s00383-012-3208-1
PubMed ID:23143133

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 3MB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations