Header

UZH-Logo

Maintenance Infos

TCR bias and HLA cross-restriction are strategies of human brain-infiltrating JC virus-specific CD4+ T cells during viral infection


Yousef, S; Planas, R; Chakroun, K; Hoffmeister-Ullerich, S; Binder, T M C; Eiermann, T H; Martin, R; Sospedra, M (2012). TCR bias and HLA cross-restriction are strategies of human brain-infiltrating JC virus-specific CD4+ T cells during viral infection. Journal of Immunology, 189(7):3618-3630.

Abstract

Virus-specific CD4(+) T cells play a central role in control of viral pathogens including JC polyoma virus (JCV) infection. JCV is a ubiquitous small DNA virus that leads to persistent infection of humans with no clinical consequences. However, under circumstances of immunocompromise, it is able to cause an opportunistic and often fatal infection of the brain called progressive multifocal leukoencephalopathy (PML). PML has emerged as a serious adverse event in multiple sclerosis patients treated with the anti-VLA-4 mAb natalizumab, which selectively inhibits cell migration across the blood-brain barrier and the gut's vascular endothelium thus compromising immune surveillance in the CNS and gut. In a multiple sclerosis patient who developed PML under natalizumab treatment and a vigorous immune response against JCV after Ab washout, we had the unique opportunity to characterize in detail JCV-specific CD4(+) T cell clones from the infected tissue during acute viral infection. The in-depth analysis of 14 brain-infiltrating, JCV-specific CD4(+) T cell clones demonstrated that these cells use an unexpectedly broad spectrum of different strategies to mount an efficient JCV-specific immune response including TCR bias, HLA cross-restriction that increases avidity and influences in vivo expansion, and a combination of Th1 and Th1-2 functional phenotypes. The level of combinatorial diversity in TCR- and HLA-peptide interactions used by brain-infiltrating, JCV-specific CD4(+) T cells has not, to our knowledge, been reported before in humans for other viral infections and confirms the exceptional plasticity that characterizes virus-specific immune responses.

Abstract

Virus-specific CD4(+) T cells play a central role in control of viral pathogens including JC polyoma virus (JCV) infection. JCV is a ubiquitous small DNA virus that leads to persistent infection of humans with no clinical consequences. However, under circumstances of immunocompromise, it is able to cause an opportunistic and often fatal infection of the brain called progressive multifocal leukoencephalopathy (PML). PML has emerged as a serious adverse event in multiple sclerosis patients treated with the anti-VLA-4 mAb natalizumab, which selectively inhibits cell migration across the blood-brain barrier and the gut's vascular endothelium thus compromising immune surveillance in the CNS and gut. In a multiple sclerosis patient who developed PML under natalizumab treatment and a vigorous immune response against JCV after Ab washout, we had the unique opportunity to characterize in detail JCV-specific CD4(+) T cell clones from the infected tissue during acute viral infection. The in-depth analysis of 14 brain-infiltrating, JCV-specific CD4(+) T cell clones demonstrated that these cells use an unexpectedly broad spectrum of different strategies to mount an efficient JCV-specific immune response including TCR bias, HLA cross-restriction that increases avidity and influences in vivo expansion, and a combination of Th1 and Th1-2 functional phenotypes. The level of combinatorial diversity in TCR- and HLA-peptide interactions used by brain-infiltrating, JCV-specific CD4(+) T cells has not, to our knowledge, been reported before in humans for other viral infections and confirms the exceptional plasticity that characterizes virus-specific immune responses.

Statistics

Citations

15 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 30 Nov 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2012
Deposited On:30 Nov 2012 13:30
Last Modified:21 Nov 2017 16:15
Publisher:American Association of Immunologists
ISSN:0022-1767
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.4049/jimmunol.1201612
PubMed ID:22942431

Download