Header

UZH-Logo

Maintenance Infos

Evidence of frost-cracking inferred from acoustic emissions in a high-alpine rock-wall


Amitrano, David; Gruber, Stephan; Girard, Lucas (2012). Evidence of frost-cracking inferred from acoustic emissions in a high-alpine rock-wall. Earth and Planetary Science Letters, 341-344:86-93.

Abstract

Ice formation within rock is known to be an important driver of near-surface frost weathering as well as of rock damage at the depth of several meters, which may play a crucial role for the slow preconditioning of rock fall in steep permafrost areas. This letter reports results from an experiment where acoustic emission monitoring was used to investigate rock damage in a high-alpine rock-wall induced by natural thermal cycling and freezing/thawing. The analysis of the large catalog of events obtained shows (i) robust power-law distributions in the time and energy domains, a footprint of rock micro-fracturing activity induced by stresses arising from thermal variations and associated freezing/ thawing of rock; (ii) an increase in AE activity under sub-zero rock-temperatures, suggesting the importance of freezing-induced stresses. AE activity further increases in locations of the rock-wall that are prone to receiving melt water. These results suggest that the framework of further modeling studies (theoretical and numerical) should include damage, elastic interaction and poro-mechanics in order to describe freezing-related stresses.

Abstract

Ice formation within rock is known to be an important driver of near-surface frost weathering as well as of rock damage at the depth of several meters, which may play a crucial role for the slow preconditioning of rock fall in steep permafrost areas. This letter reports results from an experiment where acoustic emission monitoring was used to investigate rock damage in a high-alpine rock-wall induced by natural thermal cycling and freezing/thawing. The analysis of the large catalog of events obtained shows (i) robust power-law distributions in the time and energy domains, a footprint of rock micro-fracturing activity induced by stresses arising from thermal variations and associated freezing/ thawing of rock; (ii) an increase in AE activity under sub-zero rock-temperatures, suggesting the importance of freezing-induced stresses. AE activity further increases in locations of the rock-wall that are prone to receiving melt water. These results suggest that the framework of further modeling studies (theoretical and numerical) should include damage, elastic interaction and poro-mechanics in order to describe freezing-related stresses.

Statistics

Citations

17 citations in Web of Science®
21 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

53 downloads since deposited on 26 Nov 2012
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2012
Deposited On:26 Nov 2012 14:15
Last Modified:05 Apr 2016 16:06
Publisher:Elsevier
Series Name:Earth and planetary science letters
ISSN:0012-821X
Publisher DOI:https://doi.org/10.1016/j.epsl.2012.06.014

Download

Preview Icon on Download
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations