Header

UZH-Logo

Maintenance Infos

Soil information in hydrologic models: hard data, soft data, and the dialog between experimentalists and modelers


Rinderer, Michael; Seibert, Jan (2012). Soil information in hydrologic models: hard data, soft data, and the dialog between experimentalists and modelers. In: Lin, Henry. Hydropedology: Synergistic Integration of Soil Science and Hydrology. Waltham: Elsevier, 515-536.

Abstract

For understanding and predicting rainfall–runoff processes in watersheds, soils and their hydraulic properties play a central role. Experimentalists observe and document hydric soil indicators in detail for more and more sites in various catchments. Modelers, on the other hand, try to break down natural process complexity into models that are based on simplified process descriptions. The challenge for both is to identify first-order controls of catchment hydrologic behavior, which helps to better understand the nonlinearity of natural systems. This chapter describes how both, experimentalists and modelers, can work together toward a better understanding and quantification of subsurface runoff processes. Specifically, this chapter addresses the following questions: (1) How are subsurface runoff processes represented in models of different complexity, ranging from simple conceptual ones to more complex physically based ones? (2) How can catch- ment-scale models be parametrized using point-scale measurements and existing model approaches originally developed for small scales (e.g. a soil column)? (3) Which information can be gained from soil surveying methods, including mapping approaches of hydric soil indicators? (4) Can decision schemes be useful to indicate dominant runoff processes in an objective way? Finally we describe the soft data concept as a possible way forward to enhance the dialog between experimentalists and modelers. Soft data refer to all kinds of qualitative or semi-quantitative information on pedologic and hydrologic processes and properties. These data can be made useful for modeling by applying fuzzy-logic-based functions to evaluate the degree of acceptance of model simulation outputs compared to experimentalists’ field experience.

Abstract

For understanding and predicting rainfall–runoff processes in watersheds, soils and their hydraulic properties play a central role. Experimentalists observe and document hydric soil indicators in detail for more and more sites in various catchments. Modelers, on the other hand, try to break down natural process complexity into models that are based on simplified process descriptions. The challenge for both is to identify first-order controls of catchment hydrologic behavior, which helps to better understand the nonlinearity of natural systems. This chapter describes how both, experimentalists and modelers, can work together toward a better understanding and quantification of subsurface runoff processes. Specifically, this chapter addresses the following questions: (1) How are subsurface runoff processes represented in models of different complexity, ranging from simple conceptual ones to more complex physically based ones? (2) How can catch- ment-scale models be parametrized using point-scale measurements and existing model approaches originally developed for small scales (e.g. a soil column)? (3) Which information can be gained from soil surveying methods, including mapping approaches of hydric soil indicators? (4) Can decision schemes be useful to indicate dominant runoff processes in an objective way? Finally we describe the soft data concept as a possible way forward to enhance the dialog between experimentalists and modelers. Soft data refer to all kinds of qualitative or semi-quantitative information on pedologic and hydrologic processes and properties. These data can be made useful for modeling by applying fuzzy-logic-based functions to evaluate the degree of acceptance of model simulation outputs compared to experimentalists’ field experience.

Statistics

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 05 Dec 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Book Section, not refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2012
Deposited On:05 Dec 2012 16:39
Last Modified:05 Apr 2016 16:06
Publisher:Elsevier
ISBN:978-0-12-386941-8
Publisher DOI:https://doi.org/10.1016/B978-0-12-386941-8.01001-7

Download