Header

UZH-Logo

Maintenance Infos

Epigenetic contributions in the development of rheumatoid arthritis


Klein, Kerstin; Ospelt, Caroline; Gay, Steffen (2012). Epigenetic contributions in the development of rheumatoid arthritis. Arthritis research & therapy, 14(6):227.

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease, characterized by chronic inflammation of the joints with severe pain and swelling, joint damage and disability, which leads to joint destruction and loss of function. Despite extensive research efforts, the underlying cause for RA is still unknown and current therapies are more or less effective in controlling symptoms but still fail to cure the disease. In recent years, epigenetic modifications were found to strongly contribute to the development of RA by affecting diverse aspects of the disease and modifying gene expression levels and behavior of several cell types, first and foremost joint resident synovial fibroblasts (SF). RASF are the most common cell type at the site of invasion. Owing to their aggressive, intrinsically activated phenotype, RASF are active contributors in joint damage. RASF are characterized by their ability to secrete cytokines, chemokines and joint-damaging enzymes. Furthermore, these cells are resistant to apoptosis, leading to hyperplasia of the synovium. In addition, RASF have invasive and migratory properties that could lead to spreading of the disease to unaffected joints. Epigenetic modifications, including DNA methylation and post-translational histone modifications, such as histone (de)acetylation, histone methylation and histone sumoylation were identified as regulatory mechanisms in controlling aggressive cell activation in vitro and in disease outcome in animal models in vivo. In the last 5 years, the field of epigenetics in RA has impressively increased. In this review we consider the role of diverse epigenetic modifications in the development of RA, with a special focus on epigenetic modifications in RASF.

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease, characterized by chronic inflammation of the joints with severe pain and swelling, joint damage and disability, which leads to joint destruction and loss of function. Despite extensive research efforts, the underlying cause for RA is still unknown and current therapies are more or less effective in controlling symptoms but still fail to cure the disease. In recent years, epigenetic modifications were found to strongly contribute to the development of RA by affecting diverse aspects of the disease and modifying gene expression levels and behavior of several cell types, first and foremost joint resident synovial fibroblasts (SF). RASF are the most common cell type at the site of invasion. Owing to their aggressive, intrinsically activated phenotype, RASF are active contributors in joint damage. RASF are characterized by their ability to secrete cytokines, chemokines and joint-damaging enzymes. Furthermore, these cells are resistant to apoptosis, leading to hyperplasia of the synovium. In addition, RASF have invasive and migratory properties that could lead to spreading of the disease to unaffected joints. Epigenetic modifications, including DNA methylation and post-translational histone modifications, such as histone (de)acetylation, histone methylation and histone sumoylation were identified as regulatory mechanisms in controlling aggressive cell activation in vitro and in disease outcome in animal models in vivo. In the last 5 years, the field of epigenetics in RA has impressively increased. In this review we consider the role of diverse epigenetic modifications in the development of RA, with a special focus on epigenetic modifications in RASF.

Statistics

Citations

33 citations in Web of Science®
30 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

403 downloads since deposited on 14 Dec 2012
50 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Rheumatology Clinic and Institute of Physical Medicine
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:14 Dec 2012 16:05
Last Modified:18 Aug 2017 03:41
Publisher:BioMed Central
Series Name:Arthritis Research & Therapy
ISSN:1478-6354
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/ar4074
PubMed ID:23164162

Download

Download PDF  'Epigenetic contributions in the development of rheumatoid arthritis'.
Preview
Content: Published Version
Filetype: PDF
Size: 363kB
View at publisher