Header

UZH-Logo

Maintenance Infos

Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases - Zurich Open Repository and Archive


György, Bence; Szabó, Tamás G; Turiák, Lilla; Wright, Matthew; Herczeg, Petra; Lédeczi, Zsigmond; Kittel, Agnes; Polgár, Anna; Tóth, Kálmán; Dérfalvi, Beáta; Zelenák, Gergő; Böröcz, István; Carr, Bob; Nagy, György; Vékey, Károly; Gay, Steffen; Falus, András; Buzás, Edit I (2012). Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS ONE, 7(11):e49726.

Abstract

INTRODUCTION: Microvesicles (MVs), earlier referred to as microparticles, represent a major type of extracellular vesicles currently considered as novel biomarkers in various clinical settings such as autoimmune disorders. However, the analysis of MVs in body fluids has not been fully standardized yet, and there are numerous pitfalls that hinder the correct assessment of these structures.
METHODS: In this study, we analyzed synovial fluid (SF) samples of patients with osteoarthritis (OA), rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA). To assess factors that may confound MV detection in joint diseases, we used electron microscopy (EM), Nanoparticle Tracking Analysis (NTA) and mass spectrometry (MS). For flow cytometry, a method commonly used for phenotyping and enumeration of MVs, we combined recent advances in the field, and used a novel approach of differential detergent lysis for the exclusion of MV-mimicking non-vesicular signals.
RESULTS: EM and NTA showed that substantial amounts of particles other than MVs were present in SF samples. Beyond known MV-associated proteins, MS analysis also revealed abundant plasma- and immune complex-related proteins in MV preparations. Applying improved flow cytometric analysis, we demonstrate for the first time that CD3(+) and CD8(+) T-cell derived SF MVs are highly elevated in patients with RA compared to OA patients (p = 0.027 and p = 0.009, respectively, after Bonferroni corrections). In JIA, we identified reduced numbers of B cell-derived MVs (p = 0.009, after Bonferroni correction).
CONCLUSIONS: Our results suggest that improved flow cytometric assessment of MVs facilitates the detection of previously unrecognized disease-associated vesicular signatures.

Abstract

INTRODUCTION: Microvesicles (MVs), earlier referred to as microparticles, represent a major type of extracellular vesicles currently considered as novel biomarkers in various clinical settings such as autoimmune disorders. However, the analysis of MVs in body fluids has not been fully standardized yet, and there are numerous pitfalls that hinder the correct assessment of these structures.
METHODS: In this study, we analyzed synovial fluid (SF) samples of patients with osteoarthritis (OA), rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA). To assess factors that may confound MV detection in joint diseases, we used electron microscopy (EM), Nanoparticle Tracking Analysis (NTA) and mass spectrometry (MS). For flow cytometry, a method commonly used for phenotyping and enumeration of MVs, we combined recent advances in the field, and used a novel approach of differential detergent lysis for the exclusion of MV-mimicking non-vesicular signals.
RESULTS: EM and NTA showed that substantial amounts of particles other than MVs were present in SF samples. Beyond known MV-associated proteins, MS analysis also revealed abundant plasma- and immune complex-related proteins in MV preparations. Applying improved flow cytometric analysis, we demonstrate for the first time that CD3(+) and CD8(+) T-cell derived SF MVs are highly elevated in patients with RA compared to OA patients (p = 0.027 and p = 0.009, respectively, after Bonferroni corrections). In JIA, we identified reduced numbers of B cell-derived MVs (p = 0.009, after Bonferroni correction).
CONCLUSIONS: Our results suggest that improved flow cytometric assessment of MVs facilitates the detection of previously unrecognized disease-associated vesicular signatures.

Citations

41 citations in Web of Science®
47 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

102 downloads since deposited on 06 Dec 2012
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Rheumatology Clinic and Institute of Physical Medicine
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:06 Dec 2012 14:40
Last Modified:10 Aug 2017 08:33
Publisher:Public Library of Science (PLoS)
Series Name:PLoS ONE
ISSN:1932-6203
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0049726
PubMed ID:23185418

Download

Preview Icon on Download
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 406kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations