Header

UZH-Logo

Maintenance Infos

Translating preclinical approaches into human application


Dietz, Volker; Curt, Armin (2012). Translating preclinical approaches into human application. In: Vinken, P J; Bruyn, G W. Handbook of clinical neurology. Amsterdam: Elsevier, 399-409.

Abstract

In recent decades, several novel approaches of spinal cord repair have revealed promising findings in animal models. However, for a successful translation of these into a clinical trial in humans the specific conditions pertaining to human spinal cord injuries (SCI) have to be appreciated. Firstly, transection of the spinal cord is commonly applied in animal models, whereas spinal cord contusion is the predominant type of injury in humans, and generally leads to more extensive injury in two to three spinal cord segments. Secondly, the quadrupedal organization of locomotion in animals and the more complex autonomic functions in humans challenge the translation of animal behavior into recovery from human SCI. Thirdly, so far, no adequate animal model has been developed to resemble spastic movement disorder in human SCI. Fourthly, the extensive damage to spinal motor neurons and nerve roots in human cervical and thoracolumbar in spine trauma is but little addressed in current translational studies. This damage has direct implications for rehabilitation and repair strategies. Fifthly, there is increasing evidence for a neuronal dysfunction below the level of the lesion in chronic complete SCI. The relevance of this dysfunction for a regeneration-inducing treatment needs to be investigated. Lastly, an approach to facilitate an appropriate reconnection of regenerating tract fibers by functional training in the postacute stage has yet to be confirmed.

Abstract

In recent decades, several novel approaches of spinal cord repair have revealed promising findings in animal models. However, for a successful translation of these into a clinical trial in humans the specific conditions pertaining to human spinal cord injuries (SCI) have to be appreciated. Firstly, transection of the spinal cord is commonly applied in animal models, whereas spinal cord contusion is the predominant type of injury in humans, and generally leads to more extensive injury in two to three spinal cord segments. Secondly, the quadrupedal organization of locomotion in animals and the more complex autonomic functions in humans challenge the translation of animal behavior into recovery from human SCI. Thirdly, so far, no adequate animal model has been developed to resemble spastic movement disorder in human SCI. Fourthly, the extensive damage to spinal motor neurons and nerve roots in human cervical and thoracolumbar in spine trauma is but little addressed in current translational studies. This damage has direct implications for rehabilitation and repair strategies. Fifthly, there is increasing evidence for a neuronal dysfunction below the level of the lesion in chronic complete SCI. The relevance of this dysfunction for a regeneration-inducing treatment needs to be investigated. Lastly, an approach to facilitate an appropriate reconnection of regenerating tract fibers by functional training in the postacute stage has yet to be confirmed.

Statistics

Citations

Altmetrics

Additional indexing

Item Type:Book Section, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2012
Deposited On:19 Dec 2012 15:29
Last Modified:16 Jun 2016 12:20
Publisher:Elsevier
Series Name:Handbook of Clinical Neurology
ISSN:0072-9752
Publisher DOI:https://doi.org/10.1016/B978-0-444-52137-8.00025-5
PubMed ID:23098727

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations