Header

UZH-Logo

Maintenance Infos

A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia


Künzler, Matthias; Huggel, Christian; Ramírez, Juan Manuel (2012). A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia. Natural Hazards, 64(1):767-796.

Abstract

The glacier-covered Nevado del Tolima in the Colombian Cordillera Central is an active volcano with potential lahars that might be more hazardous than those on Nevado del Ruiz. Furthermore, rainfall-triggered floods and landslides notoriously and severely affect the region. For effective disaster prevention, a risk analysis is of primary importance. We present here a risk analysis methodology that is based on the assessment of lahar and rainfall-related flood hazard scenarios and different aspects of vulnerability. The methodology is applied for populated centres in the Combeima valley and the regional capital Ibague ́ (*500,000 inhabitants). Lahar scenarios of 0.5, 1, 5, and 15 million m3 volume are based on melting of 1, 2, 10, and 25 % of ice, firn and snow, respectively, due to volcanic activity and subsequent lahar formation. For flood modelling, design floods with a return period of 10 and 100 years were calculated. Vulnerability is assessed considering physical vulnerability, operationalized by market values of dwelling parcels and population density, whereas social vulnerability is expressed by the age structure of the population and poverty. Standardization of hazard and vulnerability allows for the integration into a risk equation, resulting in five-level risk maps, with additional quantitative estimate of damage. The probability of occurrence of lahars is low, but impacts would be disastrous, with about 20,000 people and more directly exposed to it. Floods are much more recurrent, but affected areas are generally smaller. High-risk zones in Ibague ́ are found in urban areas close to the main river with high social vulnerability. The methodology has proven to be a suitable tool to provide a first overview of spatial distribution of risk which is considered by local and regional authorities for disaster risk reduction. The harmonization of technical-engineering risk analysis and approaches from social sciences into common reference concepts should be further developed.

Abstract

The glacier-covered Nevado del Tolima in the Colombian Cordillera Central is an active volcano with potential lahars that might be more hazardous than those on Nevado del Ruiz. Furthermore, rainfall-triggered floods and landslides notoriously and severely affect the region. For effective disaster prevention, a risk analysis is of primary importance. We present here a risk analysis methodology that is based on the assessment of lahar and rainfall-related flood hazard scenarios and different aspects of vulnerability. The methodology is applied for populated centres in the Combeima valley and the regional capital Ibague ́ (*500,000 inhabitants). Lahar scenarios of 0.5, 1, 5, and 15 million m3 volume are based on melting of 1, 2, 10, and 25 % of ice, firn and snow, respectively, due to volcanic activity and subsequent lahar formation. For flood modelling, design floods with a return period of 10 and 100 years were calculated. Vulnerability is assessed considering physical vulnerability, operationalized by market values of dwelling parcels and population density, whereas social vulnerability is expressed by the age structure of the population and poverty. Standardization of hazard and vulnerability allows for the integration into a risk equation, resulting in five-level risk maps, with additional quantitative estimate of damage. The probability of occurrence of lahars is low, but impacts would be disastrous, with about 20,000 people and more directly exposed to it. Floods are much more recurrent, but affected areas are generally smaller. High-risk zones in Ibague ́ are found in urban areas close to the main river with high social vulnerability. The methodology has proven to be a suitable tool to provide a first overview of spatial distribution of risk which is considered by local and regional authorities for disaster risk reduction. The harmonization of technical-engineering risk analysis and approaches from social sciences into common reference concepts should be further developed.

Statistics

Citations

11 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 28 Dec 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2012
Deposited On:28 Dec 2012 10:19
Last Modified:05 Apr 2016 16:11
Publisher:Springer
Series Name:Natural Hazard
ISSN:0921-030X
Publisher DOI:https://doi.org/10.1007/s11069-012-0271-9

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations