Header

UZH-Logo

Maintenance Infos

Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype - Zurich Open Repository and Archive


Abstract

Expansions of the noncoding GGGGCC hexanucleotide repeat in the Chromosome 9 open reading frame 72 (C9ORF72) gene cause frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In this study we aimed to determine whether the length of the normal-unexpanded-allele of the GGGGCC repeat in C9ORF72 plays a role in the presentation of disease or affects age at onset in C9ORF72 mutation carriers. We also studied whether the GGGGCC repeat length confers risk or affects age at onset in FTD and ALS patients without C9ORF72 repeat expansions. C9ORF72 genotyping was performed in 580 FTD, 995 ALS, and 160 FTD-ALS patients, and 1444 controls, leading to the identification of 211 patients with pathogenic C9ORF72 repeat expansions. No meaningful association between the repeat length of the normal alleles of the GGGGCC repeat in C9ORF72 and disease phenotype or age at onset was observed in C9ORF72 mutation carriers or nonmutation carriers.

Abstract

Expansions of the noncoding GGGGCC hexanucleotide repeat in the Chromosome 9 open reading frame 72 (C9ORF72) gene cause frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In this study we aimed to determine whether the length of the normal-unexpanded-allele of the GGGGCC repeat in C9ORF72 plays a role in the presentation of disease or affects age at onset in C9ORF72 mutation carriers. We also studied whether the GGGGCC repeat length confers risk or affects age at onset in FTD and ALS patients without C9ORF72 repeat expansions. C9ORF72 genotyping was performed in 580 FTD, 995 ALS, and 160 FTD-ALS patients, and 1444 controls, leading to the identification of 211 patients with pathogenic C9ORF72 repeat expansions. No meaningful association between the repeat length of the normal alleles of the GGGGCC repeat in C9ORF72 and disease phenotype or age at onset was observed in C9ORF72 mutation carriers or nonmutation carriers.

Citations

12 citations in Web of Science®
42 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 28 Dec 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:28 Dec 2012 11:00
Last Modified:05 Apr 2016 16:11
Publisher:Elsevier
ISSN:0197-4580
Publisher DOI:https://doi.org/10.1016/j.neurobiolaging.2012.07.005
PubMed ID:22840558

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 352kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations