Header

UZH-Logo

Maintenance Infos

Antibody 9D5 recognizes oligomeric pyroglutamate amyloid-β in a fraction of amyloid-β deposits in Alzheimer's disease without cross-reactivity with other protein aggregates


Venkataramani, Vivek; Wirths, Oliver; Budka, Herbert; Härtig, Wolfgang; Kovacs, Gabor G; Bayer, Thomas A (2012). Antibody 9D5 recognizes oligomeric pyroglutamate amyloid-β in a fraction of amyloid-β deposits in Alzheimer's disease without cross-reactivity with other protein aggregates. Journal of Alzheimer's Disease, 29(2):361-371.

Abstract

Recent evidence suggests that soluble oligomeric amyloid-β (Aβ) assemblies are critically involved in the pathogenesis of Alzheimer's disease (AD). We have generated a conformation-dependent monoclonal antibody (9D5) that selectively recognizes low-molecular weight AβpE3 oligomers, and demonstrated its diagnostic and therapeutic potential. Here, we further characterize the specificity of this antibody by evaluating a spectrum of neurodegeneration-related protein deposits for cross-reactivity, and by comparing the staining pattern of 9D5 with a generic Aβ antibody that targets a linear epitope (mAb NT244), and with another conformation-dependent Aβ antibody that selectively labels amyloid fibrils of various molecular weights (pAb OC). The 9D5 antibody does not cross-react with other aggregated protein deposits in brains of progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, Pick's disease, Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, frontotemporal lobar degeneration or amyotrophic lateral sclerosis with TDP-43 inclusions, Creutzfeldt-Jakob disease, and vessel changes in Binswanger encephalopathy, demonstrating the specificity of 9D5 for Aβ deposits. While NT244 and OC showed a comparable plaque load, 9D5 detected only approximately 15% of the total Aβ plaque load in the entorhinal cortex, the CA1 region, and the temporal neocortex. Our study further supports a possible therapeutic advantage of 9D5 by the highly specific recognition of an epitope found only in oligomeric assemblies of AβpE3 of AD patients. Moreover, selective binding to only a pathogenetically relevant fraction of Aβ deposits serves as rationale for passive immunization with 9D5-derivatives by limiting potential side effects of vaccination due to dissolvement of existing amyloid deposits.

Abstract

Recent evidence suggests that soluble oligomeric amyloid-β (Aβ) assemblies are critically involved in the pathogenesis of Alzheimer's disease (AD). We have generated a conformation-dependent monoclonal antibody (9D5) that selectively recognizes low-molecular weight AβpE3 oligomers, and demonstrated its diagnostic and therapeutic potential. Here, we further characterize the specificity of this antibody by evaluating a spectrum of neurodegeneration-related protein deposits for cross-reactivity, and by comparing the staining pattern of 9D5 with a generic Aβ antibody that targets a linear epitope (mAb NT244), and with another conformation-dependent Aβ antibody that selectively labels amyloid fibrils of various molecular weights (pAb OC). The 9D5 antibody does not cross-react with other aggregated protein deposits in brains of progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, Pick's disease, Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, frontotemporal lobar degeneration or amyotrophic lateral sclerosis with TDP-43 inclusions, Creutzfeldt-Jakob disease, and vessel changes in Binswanger encephalopathy, demonstrating the specificity of 9D5 for Aβ deposits. While NT244 and OC showed a comparable plaque load, 9D5 detected only approximately 15% of the total Aβ plaque load in the entorhinal cortex, the CA1 region, and the temporal neocortex. Our study further supports a possible therapeutic advantage of 9D5 by the highly specific recognition of an epitope found only in oligomeric assemblies of AβpE3 of AD patients. Moreover, selective binding to only a pathogenetically relevant fraction of Aβ deposits serves as rationale for passive immunization with 9D5-derivatives by limiting potential side effects of vaccination due to dissolvement of existing amyloid deposits.

Statistics

Citations

11 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

116 downloads since deposited on 14 Dec 2012
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:14 Dec 2012 10:11
Last Modified:05 Apr 2016 16:11
Publisher:IOS Press
ISSN:1387-2877
Publisher DOI:https://doi.org/10.3233/JAD-2011-111379
PubMed ID:22232007

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB
View at publisher
Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 6MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations