Header

UZH-Logo

Maintenance Infos

Cooperation of Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy


Nindl, Veronika; Maier, Reinhard; Ratering, David; De Giuli, Rita; Züst, Roland; Thiel, Volker; Scandella, Elke; Di Padova, Franco; Kopf, Manfred; Rudin, Markus; Rülicke, Thomas; Ludewig, Burkhard (2012). Cooperation of Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy. European Journal of Immunology, 42(9):2311-2321.

Abstract

Myocarditis is a potentially lethal inflammatory heart disease of children and young adults that frequently leads to dilated cardiomyopathy (DCM). Since diagnostic procedures and efficient therapies are lacking, it is important to characterize the critical immune effector pathways underlying the initial cardiac inflammation and the transition from myocarditis to DCM. We describe here a T-cell receptor (TCR) transgenic mouse model with spontaneously developing autoimmune myocarditis that progresses to lethal DCM. Cardiac magnetic resonance imaging revealed early inflammation-associated changes in the ventricle wall including transient thickening of the left ventricle wall. Furthermore, we found that IFN-γ was a major effector cytokine driving the initial inflammatory process and that the cooperation of IFN-γ and IL-17A was essential for the development of the progressive disease. This novel TCR transgenic mouse model permits the identification of the central pathophysiological and immunological processes involved in the transition from autoimmune myocarditis to DCM.

Abstract

Myocarditis is a potentially lethal inflammatory heart disease of children and young adults that frequently leads to dilated cardiomyopathy (DCM). Since diagnostic procedures and efficient therapies are lacking, it is important to characterize the critical immune effector pathways underlying the initial cardiac inflammation and the transition from myocarditis to DCM. We describe here a T-cell receptor (TCR) transgenic mouse model with spontaneously developing autoimmune myocarditis that progresses to lethal DCM. Cardiac magnetic resonance imaging revealed early inflammation-associated changes in the ventricle wall including transient thickening of the left ventricle wall. Furthermore, we found that IFN-γ was a major effector cytokine driving the initial inflammatory process and that the cooperation of IFN-γ and IL-17A was essential for the development of the progressive disease. This novel TCR transgenic mouse model permits the identification of the central pathophysiological and immunological processes involved in the transition from autoimmune myocarditis to DCM.

Statistics

Citations

27 citations in Web of Science®
28 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology

04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:570 Life sciences; biology
170 Ethics
610 Medicine & health
Language:English
Date:2012
Deposited On:20 Dec 2012 08:21
Last Modified:05 Apr 2016 16:12
Publisher:Wiley-VCH Verlag Berlin
ISSN:0014-2980
Publisher DOI:https://doi.org/10.1002/eji.201142209
PubMed ID:22730043

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations