Header

UZH-Logo

Maintenance Infos

Scattering amplitudes with open loops


Cascioli, F; Maierhöfer, P; Pozzorini, S (2012). Scattering amplitudes with open loops. Physical Review Letters, 108:111601.

Abstract

We introduce a new technique to generate scattering amplitudes at one loop. Traditional tree algorithms, which handle diagrams with fixed momenta, are promoted to generators of loop-momentum polynomials that we call open loops. Combining open loops with tensor-integral and Ossola-Papadopoulos-Pittau reduction results in a fully flexible, very fast, and numerically stable one-loop generator. As demonstrated with nontrivial applications, the open-loop approach will permit us to obtain precise predictions for a very wide range of collider processes.

Abstract

We introduce a new technique to generate scattering amplitudes at one loop. Traditional tree algorithms, which handle diagrams with fixed momenta, are promoted to generators of loop-momentum polynomials that we call open loops. Combining open loops with tensor-integral and Ossola-Papadopoulos-Pittau reduction results in a fully flexible, very fast, and numerically stable one-loop generator. As demonstrated with nontrivial applications, the open-loop approach will permit us to obtain precise predictions for a very wide range of collider processes.

Statistics

Citations

208 citations in Web of Science®
223 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

34 downloads since deposited on 05 Mar 2013
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2012
Deposited On:05 Mar 2013 10:05
Last Modified:05 Apr 2016 16:17
Publisher:American Physical Society
ISSN:0031-9007
Publisher DOI:https://doi.org/10.1103/PhysRevLett.108.111601

Download

Preview Icon on Download
Preview
Filetype: PDF
Size: 146kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations