Header

UZH-Logo

Maintenance Infos

New constraints on the evolution of the stellar-to-dark matter connection: A combined analysis of galaxy-galaxy lensing, clustering, and stellar mass functions from z=0.2 to z=1


Leauthaud, Alexie; Tinker, Jeremy; et al (2012). New constraints on the evolution of the stellar-to-dark matter connection: A combined analysis of galaxy-galaxy lensing, clustering, and stellar mass functions from z=0.2 to z=1. Astrophysical Journal, 744(2):159.

Abstract

Using data from the COSMOS survey, we perform the first joint analysis of galaxy-galaxy weak lensing, galaxy spatial clustering, and galaxy number densities. Carefully accounting for sample variance and for scatter between stellar and halo mass, we model all three observables simultaneously using a novel and self-consistent theoretical framework. Our results provide strong constraints on the shape and redshift evolution of the stellar-to-halo mass relation (SHMR) from z = 0.2 to z = 1. At low stellar mass, we find that halo mass scales as Mh vpropM 0.46 * and that this scaling does not evolve significantly with redshift from z = 0.2 to z = 1. The slope of the SHMR rises sharply at M * > 5 × 1010 M sun and as a consequence, the stellar mass of a central galaxy becomes a poor tracer of its parent halo mass. We show that the dark-to-stellar ratio, Mh /M *, varies from low to high masses, reaching a minimum of Mh /M * ~ 27 at M * = 4.5 × 1010 M sun and Mh = 1.2 × 1012 M sun. This minimum is important for models of galaxy formation because it marks the mass at which the accumulated stellar growth of the central galaxy has been the most efficient. We describe the SHMR at this minimum in terms of the "pivot stellar mass," M piv *, the "pivot halo mass," M piv h , and the "pivot ratio," (Mh /M *)piv. Thanks to a homogeneous analysis of a single data set spanning a large redshift range, we report the first detection of mass downsizing trends for both M piv h and M piv *. The pivot stellar mass decreases from M piv * = 5.75 ± 0.13 × 1010 M sun at z = 0.88 to M piv * = 3.55 ± 0.17 × 1010 M sun at z = 0.37. Intriguingly, however, the corresponding evolution of M piv h leaves the pivot ratio constant with redshift at (Mh /M *)piv ~ 27. We use simple arguments to show how this result raises the possibility that star formation quenching may ultimately depend on Mh /M * and not simply on Mh , as is commonly assumed. We show that simple models with such a dependence naturally lead to downsizing in the sites of star formation. Finally, we discuss the implications of our results in the context of popular quenching models, including disk instabilities and active galactic nucleus feedback.

Abstract

Using data from the COSMOS survey, we perform the first joint analysis of galaxy-galaxy weak lensing, galaxy spatial clustering, and galaxy number densities. Carefully accounting for sample variance and for scatter between stellar and halo mass, we model all three observables simultaneously using a novel and self-consistent theoretical framework. Our results provide strong constraints on the shape and redshift evolution of the stellar-to-halo mass relation (SHMR) from z = 0.2 to z = 1. At low stellar mass, we find that halo mass scales as Mh vpropM 0.46 * and that this scaling does not evolve significantly with redshift from z = 0.2 to z = 1. The slope of the SHMR rises sharply at M * > 5 × 1010 M sun and as a consequence, the stellar mass of a central galaxy becomes a poor tracer of its parent halo mass. We show that the dark-to-stellar ratio, Mh /M *, varies from low to high masses, reaching a minimum of Mh /M * ~ 27 at M * = 4.5 × 1010 M sun and Mh = 1.2 × 1012 M sun. This minimum is important for models of galaxy formation because it marks the mass at which the accumulated stellar growth of the central galaxy has been the most efficient. We describe the SHMR at this minimum in terms of the "pivot stellar mass," M piv *, the "pivot halo mass," M piv h , and the "pivot ratio," (Mh /M *)piv. Thanks to a homogeneous analysis of a single data set spanning a large redshift range, we report the first detection of mass downsizing trends for both M piv h and M piv *. The pivot stellar mass decreases from M piv * = 5.75 ± 0.13 × 1010 M sun at z = 0.88 to M piv * = 3.55 ± 0.17 × 1010 M sun at z = 0.37. Intriguingly, however, the corresponding evolution of M piv h leaves the pivot ratio constant with redshift at (Mh /M *)piv ~ 27. We use simple arguments to show how this result raises the possibility that star formation quenching may ultimately depend on Mh /M * and not simply on Mh , as is commonly assumed. We show that simple models with such a dependence naturally lead to downsizing in the sites of star formation. Finally, we discuss the implications of our results in the context of popular quenching models, including disk instabilities and active galactic nucleus feedback.

Statistics

Citations

228 citations in Web of Science®
225 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

222 downloads since deposited on 22 Jan 2013
30 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:January 2012
Deposited On:22 Jan 2013 16:36
Last Modified:05 Apr 2016 16:19
Publisher:IOP Publishing
ISSN:0004-637X
Publisher DOI:https://doi.org/10.1088/0004-637X/744/2/159

Download

Preview Icon on Download
Preview
Filetype: PDF
Size: 2MB
View at publisher