Header

UZH-Logo

Maintenance Infos

Assessment of intermittent UMTS electromagnetic field effects on blood circulation in the human auditory region using a near-infrared system


Spichtig, S; Scholkmann, F; Chin, L; Lehmann, H; Wolf, M (2012). Assessment of intermittent UMTS electromagnetic field effects on blood circulation in the human auditory region using a near-infrared system. Bioelectromagnetics, 33(1):40-54.

Abstract

The aim of the present study was to assess the potential effects of intermittent Universal Mobile Telecommunications System electromagnetic fields (UMTS-EMF) on blood circulation in the human head (auditory region) using near-infrared spectroscopy (NIRS) on two different timescales: short-term (effects occurring within 80 s) and medium-term (effects occurring within 80 s to 30 min). For the first time, we measured potential immediate effects of UMTS-EMF in real-time without any interference during exposure. Three different exposures (sham, 0.18 W/kg, and 1.8 W/kg) were applied in a controlled, randomized, crossover, and double-blind paradigm on 16 healthy volunteers. In addition to oxy-, deoxy-, and total haemoglobin concentrations ([O(2) Hb], [HHb], and [tHb], respectively), the heart rate (HR), subjective well-being, tiredness, and counting speed were recorded. During exposure to 0.18 W/kg, we found a significant short-term increase in Δ[O(2) Hb] and Δ[tHb], which is small (≈17%) compared to a functional brain activation. A significant decrease in the medium-term response of Δ[HHb] at 0.18 and 1.8 W/kg exposures was detected, which is in the range of physiological fluctuations. The medium-term ΔHR was significantly higher (+1.84 bpm) at 1.8 W/kg than for sham exposure. The other parameters showed no significant effects. Our results suggest that intermittent exposure to UMTS-EMF has small short- and medium-term effects on cerebral blood circulation and HR.

Abstract

The aim of the present study was to assess the potential effects of intermittent Universal Mobile Telecommunications System electromagnetic fields (UMTS-EMF) on blood circulation in the human head (auditory region) using near-infrared spectroscopy (NIRS) on two different timescales: short-term (effects occurring within 80 s) and medium-term (effects occurring within 80 s to 30 min). For the first time, we measured potential immediate effects of UMTS-EMF in real-time without any interference during exposure. Three different exposures (sham, 0.18 W/kg, and 1.8 W/kg) were applied in a controlled, randomized, crossover, and double-blind paradigm on 16 healthy volunteers. In addition to oxy-, deoxy-, and total haemoglobin concentrations ([O(2) Hb], [HHb], and [tHb], respectively), the heart rate (HR), subjective well-being, tiredness, and counting speed were recorded. During exposure to 0.18 W/kg, we found a significant short-term increase in Δ[O(2) Hb] and Δ[tHb], which is small (≈17%) compared to a functional brain activation. A significant decrease in the medium-term response of Δ[HHb] at 0.18 and 1.8 W/kg exposures was detected, which is in the range of physiological fluctuations. The medium-term ΔHR was significantly higher (+1.84 bpm) at 1.8 W/kg than for sham exposure. The other parameters showed no significant effects. Our results suggest that intermittent exposure to UMTS-EMF has small short- and medium-term effects on cerebral blood circulation and HR.

Statistics

Citations

Dimensions.ai Metrics
8 citations in Web of Science®
9 citations in Scopus®
8 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 22 Jan 2013
4 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neonatology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2012
Deposited On:22 Jan 2013 16:42
Last Modified:17 Feb 2018 00:40
Publisher:Wiley-Blackwell
ISSN:0197-8462
Additional Information:This is the peer reviewed version of the following article: Spichtig S et al: Bioelectromagnetics, Volume 33, Issue 1, 2012, 40–54, which has been published in final form at http://doi.org/10.1002/bem.20682. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms).
OA Status:Green
Publisher DOI:https://doi.org/10.1002/bem.20682
PubMed ID:21695708

Download