Header

UZH-Logo

Maintenance Infos

Symmetric theta divisors of Klein surfaces - Zurich Open Repository and Archive


Okonek, C; Telemann, A (2012). Symmetric theta divisors of Klein surfaces. Central European Journal of Mathematics, 10(4):1314-1320.

Abstract

This is a slightly expanded version of the talk given by the first author at the conference Instantons in complex geometry, at the Steklov Institute in Moscow. The purpose of this talk was to explain the algebraic results of our paper Abelian Yang-Mills theory on Real tori and Theta divisors of Klein surfaces. In this paper we compute determinant index bundles of certain families of Real Dirac type operators on Klein surfaces as elements in the corresponding Grothendieck group of Real line bundles in the sense of Atiyah. On a Klein surface these determinant index bundles have a natural holomorphic description as theta line bundles. In particular we compute the first Stiefel-Whitney classes of the corresponding fixed point bundles on the real part of the Picard torus. The computation of these classes is important, because they control to a large extent the orientability of certain moduli spaces in Real gauge theory and Real algebraic geometry.

Abstract

This is a slightly expanded version of the talk given by the first author at the conference Instantons in complex geometry, at the Steklov Institute in Moscow. The purpose of this talk was to explain the algebraic results of our paper Abelian Yang-Mills theory on Real tori and Theta divisors of Klein surfaces. In this paper we compute determinant index bundles of certain families of Real Dirac type operators on Klein surfaces as elements in the corresponding Grothendieck group of Real line bundles in the sense of Atiyah. On a Klein surface these determinant index bundles have a natural holomorphic description as theta line bundles. In particular we compute the first Stiefel-Whitney classes of the corresponding fixed point bundles on the real part of the Picard torus. The computation of these classes is important, because they control to a large extent the orientability of certain moduli spaces in Real gauge theory and Real algebraic geometry.

Altmetrics

Downloads

2 downloads since deposited on 25 Jan 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:August 2012
Deposited On:25 Jan 2013 09:23
Last Modified:05 Apr 2016 16:20
Publisher:Versita
ISSN:1895-1074
Publisher DOI:https://doi.org/10.2478/s11533-012-0048-0

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 220kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations