Header

UZH-Logo

Maintenance Infos

Endotoxin removal by magnetic separation-based blood purification - Zurich Open Repository and Archive


Herrmann, Inge K; Urner, Martin; Graf, Samuel; Schumacher, Christoph M; Roth-Z'graggen, Birgit; Hasler, Melanie; Stark, Wendelin J; Beck-Schimmer, Beatrice (2013). Endotoxin removal by magnetic separation-based blood purification. Advanced Healthcare Materials, 2(6):829-835.

Abstract

This work describes a magnetic separation-based approach using polymyxin B-functionalized metal alloy nanomagnets for the rapid elimination of endotoxins from human blood in vitro and functional assays to evaluate the biological relevance of the blood purification process. Playing a central role in gram-negative sepsis, bacteria-derived endotoxins are attractive therapeutic targets. However, both direct endotoxin detection in and removal from protein-rich fluids remains challenging. We present the synthesis and functionalization of ultra-magnetic cobalt/iron alloy nanoparticles and a magnetic separation-based approach using polymyxin B-functionalized nanomagnets to remove endotoxin from human blood in vitro. Conventional chromogenic Limulus Amebocyte Lysate assays confirm decreased endotoxin activity in purified compared to untreated samples. Functional assays assessing key steps in host defense against bacteria show an attenuated inflammatory mediator expression from human primary endothelial cells in response to purified blood samples compared to untreated blood and less chemotactic activity. Exposing Escherichia coli-positive blood samples to polymyxin B-functionalized nanomagnets even impairs the ability of gram-negative bacteria to form colony forming units, thus making magnetic separation based blood purification a promising new approach for future sepsis treatment.

Abstract

This work describes a magnetic separation-based approach using polymyxin B-functionalized metal alloy nanomagnets for the rapid elimination of endotoxins from human blood in vitro and functional assays to evaluate the biological relevance of the blood purification process. Playing a central role in gram-negative sepsis, bacteria-derived endotoxins are attractive therapeutic targets. However, both direct endotoxin detection in and removal from protein-rich fluids remains challenging. We present the synthesis and functionalization of ultra-magnetic cobalt/iron alloy nanoparticles and a magnetic separation-based approach using polymyxin B-functionalized nanomagnets to remove endotoxin from human blood in vitro. Conventional chromogenic Limulus Amebocyte Lysate assays confirm decreased endotoxin activity in purified compared to untreated samples. Functional assays assessing key steps in host defense against bacteria show an attenuated inflammatory mediator expression from human primary endothelial cells in response to purified blood samples compared to untreated blood and less chemotactic activity. Exposing Escherichia coli-positive blood samples to polymyxin B-functionalized nanomagnets even impairs the ability of gram-negative bacteria to form colony forming units, thus making magnetic separation based blood purification a promising new approach for future sepsis treatment.

Statistics

Citations

13 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 24 Jan 2013
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > University Hospital Zurich > Institute of Anesthesiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Date:2013
Deposited On:24 Jan 2013 14:26
Last Modified:05 Apr 2016 16:20
Publisher:Wiley-Blackwell
ISSN:2192-2640
Publisher DOI:https://doi.org/10.1002/adhm.201200358
PubMed ID:23225582

Download

Preview Icon on Download
Content: Accepted Version
Filetype: PDF - Registered users only
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations