Header

UZH-Logo

Maintenance Infos

Non-water-suppressed proton MR spectroscopy improves spectral quality in the human spinal cord


Hock, Andreas; Macmillan, Erin L; Fuchs, Alexander; Kreis, Roland; Boesiger, Peter; Kollias, Spyros S; Henning, Anke (2013). Non-water-suppressed proton MR spectroscopy improves spectral quality in the human spinal cord. Magnetic Resonance in Medicine, 69(5):1253-1260.

Abstract

Magnetic resonance spectroscopy enables insight into the chemical composition of spinal cord tissue. However, spinal cord magnetic resonance spectroscopy has rarely been applied in clinical work due to technical challenges, including strong susceptibility changes in the region and the small cord diameter, which distort the lineshape and limit the attainable signal to noise ratio. Hence, extensive signal averaging is required, which increases the likelihood of static magnetic field changes caused by subject motion (respiration, swallowing), cord motion, and scanner-induced frequency drift. To avoid incoherent signal averaging, it would be ideal to perform frequency alignment of individual free induction decays before averaging. Unfortunately, this is not possible due to the low signal to noise ratio of the metabolite peaks. In this article, frequency alignment of individual free induction decays is demonstrated to improve spectral quality by using the high signal to noise ratio water peak from non-water-suppressed proton magnetic resonance spectroscopy via the metabolite cycling technique. Electrocardiography (ECG)-triggered point resolved spectroscopy (PRESS) localization was used for data acquisition with metabolite cycling or water suppression for comparison. A significant improvement in the signal to noise ratio and decrease of the Cramér Rao lower bounds of all metabolites is attained by using metabolite cycling together with frequency alignment, as compared to water-suppressed spectra, in 13 healthy volunteers. Magn Reson Med, 2012.

Abstract

Magnetic resonance spectroscopy enables insight into the chemical composition of spinal cord tissue. However, spinal cord magnetic resonance spectroscopy has rarely been applied in clinical work due to technical challenges, including strong susceptibility changes in the region and the small cord diameter, which distort the lineshape and limit the attainable signal to noise ratio. Hence, extensive signal averaging is required, which increases the likelihood of static magnetic field changes caused by subject motion (respiration, swallowing), cord motion, and scanner-induced frequency drift. To avoid incoherent signal averaging, it would be ideal to perform frequency alignment of individual free induction decays before averaging. Unfortunately, this is not possible due to the low signal to noise ratio of the metabolite peaks. In this article, frequency alignment of individual free induction decays is demonstrated to improve spectral quality by using the high signal to noise ratio water peak from non-water-suppressed proton magnetic resonance spectroscopy via the metabolite cycling technique. Electrocardiography (ECG)-triggered point resolved spectroscopy (PRESS) localization was used for data acquisition with metabolite cycling or water suppression for comparison. A significant improvement in the signal to noise ratio and decrease of the Cramér Rao lower bounds of all metabolites is attained by using metabolite cycling together with frequency alignment, as compared to water-suppressed spectra, in 13 healthy volunteers. Magn Reson Med, 2012.

Statistics

Citations

16 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neuroradiology
04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2013
Deposited On:29 Jan 2013 08:31
Last Modified:05 Apr 2016 16:20
Publisher:Wiley-Blackwell
ISSN:0740-3194
Publisher DOI:https://doi.org/10.1002/mrm.24387
PubMed ID:22745036

Download

Full text not available from this repository.
View at publisher