Header

UZH-Logo

Maintenance Infos

Radial migration in disc galaxies - I. Transient spiral structure and dynamics


Roškar, Rok; Debattista, Victor P; Quinn, Thomas R; Wadsley, James (2012). Radial migration in disc galaxies - I. Transient spiral structure and dynamics. Monthly Notices of the Royal Astronomical Society, 426(3):2089-2106.

Abstract

We seek to understand the origin of radial migration in spiral galaxies by analysing in detail the structure and evolution of an idealized, isolated galactic disc. To understand the redistribution of stars, we characterize the time evolution of properties of spirals that spontaneously form in the disc. Our models unambiguously show that in such discs, single spirals are unlikely, but that a number of transient patterns may coexist in the disc. However, we also show that while spirals are transient in amplitude, at any given time the disc favours patterns of certain pattern speeds. Using several runs with different numerical parameters we show that the properties of spirals that occur spontaneously in the disc do not sensitively depend on resolution. The existence of multiple transient patterns has large implications for the orbits of stars in the disc, and we therefore examine the resonant scattering mechanisms that profoundly alter angular momenta of individual stars. We confirm that the corotation scattering mechanism described by Sellwood & Binney is responsible for the largest angular momentum changes in our simulations.

Abstract

We seek to understand the origin of radial migration in spiral galaxies by analysing in detail the structure and evolution of an idealized, isolated galactic disc. To understand the redistribution of stars, we characterize the time evolution of properties of spirals that spontaneously form in the disc. Our models unambiguously show that in such discs, single spirals are unlikely, but that a number of transient patterns may coexist in the disc. However, we also show that while spirals are transient in amplitude, at any given time the disc favours patterns of certain pattern speeds. Using several runs with different numerical parameters we show that the properties of spirals that occur spontaneously in the disc do not sensitively depend on resolution. The existence of multiple transient patterns has large implications for the orbits of stars in the disc, and we therefore examine the resonant scattering mechanisms that profoundly alter angular momenta of individual stars. We confirm that the corotation scattering mechanism described by Sellwood & Binney is responsible for the largest angular momentum changes in our simulations.

Statistics

Citations

74 citations in Web of Science®
71 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 22 Jan 2013
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:November 2012
Deposited On:22 Jan 2013 16:29
Last Modified:07 Dec 2017 18:37
Publisher:Wiley-Blackwell
ISSN:0035-8711
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/j.1365-2966.2012.21860.x

Download