Header

UZH-Logo

Maintenance Infos

Craniospinal pressure-volume dynamics in phantom models


Schmid Daners, Marianne; Bottan, Simone; Guzzella, Lino; Poulikakos, Dimos; Kurtcuoglu, Vartan (2012). Craniospinal pressure-volume dynamics in phantom models. IEEE Transactions on Bio-Medical Engineering, 59(12):3482-3490.

Abstract

Regulation of intracranial pressure (ICP) is vital to proper brain function. Pathologic conditions such as traumatic brain injury and hydrocephalus can cause lethal changes in ICP through an imbalance of fluid passage into and out of the craniospinal space. The relationship between craniospinal volume and pressure determines to a large extent whether such imbalance can be compensated or if it will lead to neuronal damage. Phantom models are predisposed for the evaluation of medical procedures and devices that alter volume in the spinal or cranial space. However, current phantoms have substantial limitations in the reproduction of craniospinal pressure-volume relationships, which need to be overcome prior to their deployment outside the basic research setting. We present herein a novel feedback controlled phantom for the reproduction of any physiologic or pathologic pressure-volume relation. We compare its performance to those of existing passive methods, showing that it follows reference curves more precisely during both infusion of large volumes and fast oscillatory volume changes.

Abstract

Regulation of intracranial pressure (ICP) is vital to proper brain function. Pathologic conditions such as traumatic brain injury and hydrocephalus can cause lethal changes in ICP through an imbalance of fluid passage into and out of the craniospinal space. The relationship between craniospinal volume and pressure determines to a large extent whether such imbalance can be compensated or if it will lead to neuronal damage. Phantom models are predisposed for the evaluation of medical procedures and devices that alter volume in the spinal or cranial space. However, current phantoms have substantial limitations in the reproduction of craniospinal pressure-volume relationships, which need to be overcome prior to their deployment outside the basic research setting. We present herein a novel feedback controlled phantom for the reproduction of any physiologic or pathologic pressure-volume relation. We compare its performance to those of existing passive methods, showing that it follows reference curves more precisely during both infusion of large volumes and fast oscillatory volume changes.

Statistics

Citations

5 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:31 Jan 2013 15:39
Last Modified:05 Apr 2016 16:22
Publisher:Institute of Electrical and Electronics Engineers
ISSN:0018-9294
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1109/TBME.2012.2214220
PubMed ID:23008242

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations