Synthesis and structure of a hydrogenated zinc hemiporphyrzin

Huber, Sabrina M; Mata, Guillaume; Linden, Anthony; Luedtke, Nathan W

Abstract: Palladium-catalyzed hydrogenation of an octahedral zinc trans-ditriflate hemiporphyrzin “HpH2Zn(OTf)2” furnishes a new macrocycle “HpH6Zn(OTf)2”. This reaction is fully reversible upon heating in nitrobenzene, and the conversion is easily monitored by changes in color and fluorescence properties. The reversible cycling between these molecules may find future applications in hemiporphyrizin-based catalysts and/or hydrogen storage devices.

DOI: https://doi.org/10.1039/c2cc37151k

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-71540
Accepted Version

Originally published at:
DOI: https://doi.org/10.1039/c2cc37151k
Synthesis and Structure of a Hydrogenated Zinc Hemiporphyrazine†

Sabrina M. Huber, Guillaume Mata, Anthony Linden, Nathan W. Luedtke*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/c0xx00000x

Palladium-catalyzed hydrogenation of an octahedral zinc trans-ditriflate hemiporphyrazine “HpH₂Zn(OTf)₂”, furnishes a new macrocycle “HpH₆Zn(OTf)₂”. This reaction is fully reversible upon heating in nitrobenzene, and the conversion is easily monitored by changes in color and fluorescence properties. The reversible cycling between these molecules may find future applications in hemiporphyrazine-based catalysts and/or hydrogen storage devices.

18 π electron phthalocyanines (Pcs) constitute some of the most important functional materials today. Initially used as dyestuffs, Pcs are also valuable components of catalysts, photoelectrics, data storage devices, photosensitizers, and chemical sensors. The structurally related hemiporphyrazines (Hps), in contrast, have a non-aromatic 20 π electron skeleton with highly localized double bonds. It is well known that hemiporphyrazines exhibit sensitivity to acid-mediated hydrolysis, but little else is known about the fundamental chemical reactivity of the hemiporphyrazine macrocycle. While hemiporphyrazines can be elaborated by the introduction of substituents to the periphery during macrocycle formation, direct modifications to the hemiporphyrazine macrocyclic “core” have not previously been reported. We hypothesized that, in contrast to Pcs, Hps should be reactive towards skeletal modifications due to their 20 electron π systems.

We recently reported the synthesis, structure, and photophysical properties of an octahedral zinc trans-ditriflate hemiporphyrazine complex “HpH₂Zn(OTf)₂” (Scheme 1, 1). In this complex, the charge of divalent zinc is balanced by axial triflate counterions, rendering the compound soluble in MeOH and other organic solvents. In contrast to other metal-Hp complexes where the Hp serves as an anionic ligand, HpH₂Zn(OTf)₂ contains a neutral Hp ligand with two protonated meso-nitrogen atoms. Bond length analyses of a high-resolution crystal structure indicated that these two positions possess delocalized enamine-like bonding (N=C=N) while the other bridging nitrogen atoms possess iminic (N=C) character. This suggested that regioselective reactions could be achieved at the meso positions in a C₂-selective fashion. To test this concept, we evaluated the reactivity of 1 towards catalytic hydrogenation under a 1 atm H₂-atmosphere in the presence of palladium black.

We speculated that the iminic meso-nitrogen sites would be highly reactive towards catalytic hydrogenation while the enamine-like meso-nitrogens would remain unmodified. Indeed, the reaction of 1 under an H₂-atmosphere in the presence of palladium black resulted in the addition of exactly two equivalents of H₂ to furnish the new crystalline material zinc tetrahydro-hemiporphyrazine “HpH₆Zn(OTf)₂” (2) (Scheme 1). Complex 2 is stable towards atmospheric oxidation in the solid state and can be handled in the presence of trace water without decomposition. Elemental analysis of 2 indicated that the product was obtained as a monohydrate. 1H-NMR spectra collected in d₆-DMSO indicate that HpH₆Zn(OTf)₂ (2) was generated as a single diastereomer having C₂ symmetry (Figure 1). 1H-NMR analysis also indicates the presence of two distinct sets of meso-nitrogen hydrogens with enamine-like N-H resonances at 11.4 ppm, and amine-like resonances at 8.5 ppm (Figure 1). According to time-dependent NMR measurements, 2 in DMSO is stable at room temperature in the presence of atmospheric oxygen for days. However, in the presence of nitrobenzene at 180°C, 2 is oxidized to the parent compound 1 in quantitative yield.
Crystals of 2 suitable for crystallographic characterization were grown from methanolic solutions by slow diffusion of diethylether/pentane (1:1). X-ray diffraction analysis of a single crystal revealed that two equivalents of H2 had been added co-facially to give a saddle-shaped HpH2Zn(OH2)·(OTf)2 macrocycle. The axial position of the 5-coordinate zinc ion is occupied by a water molecule that acts as O-H•••O hydrogen bond donor to the triflate counterions (omitted for clarity in Figure 2) (H•••O = 1.98(3) Å). Bond length analysis confirms reduction at the two iminic meso-nitrogen positions. The relatively short N=C bonds of 1.274 (2) Å present in the starting material (1),5 have been replaced by N4-C1 bonds of 1.433(2) Å in 2. In contrast, the N1-C4 and C4-N2 bonds of 1.308(2) Å and 1.338(2) Å in 2 are nearly identical in length to the enamine-like (N=C=N) bonds present in the starting material (1): 1.328(2) Å and 1.331(2) Å.5

To our surprise, an apparent red-shift in luminescent emissions was observed following hydrogenation of 1. Figure 4 shows the excitation and emission spectra of 1 and 2 collected in DMSO. Similar to the changes in absorbance (Figure 3), a blue-shift in the excitation spectrum of 2 was observed as compared to 1 (Figure 4). In contrast, the emission spectra exhibit the opposite trend, resulting in a large Stoke’s shift for compound 2. Upon excitation at 350 nm, the parent compound 1 gives emissions centered at 420 nm which are thought to result from emissive S2 states (Figure 4).5 Previous studies have suggested that aggregated hemiporphyrines and aromatized analogs can exhibit emissions from S1 states ranging from 550 – 700 nm.5,8 Compound 2, in contrast, exhibits a broad emission peak centred at 460 nm, probably from emissive S1 states.

Fig. 2 Crystal structure of HpH6Zn(OH2)·(OTf)2. The triflate counterions and selected hydrogen atoms have been omitted for clarity. 50% displacement ellipsoids are shown.

Hydrogenation of 1 reduces the extent of π-conjugation within the macrocyclic scaffold, resulting in a large color change. The hydrogenation reaction can therefore be monitored by simple visual inspection, as the red starting material (1) is converted to the yellow product (2). To further characterize these changes, the absorbance spectra of 1 and 2 were recorded in DMSO (Figure 3). DMSO was selected as the solvent because it is known to prevent aggregation of compound 1.5 Indeed, both 1 and 2 were found to obey Beer’s law from 4 µM – 200 µM in DMSO. Similar to other reported hemiporphyrins,7 1 exhibits a very broad, yet weak, absorption band centered at 530 nm. While the origin of this absorbance remains unknown,7 it is either absent or greatly diminished and blue-shifted in 2. This suggests that the transitions in this region involve the extended conjugation of the Hp macrocycle (1). Likewise, the S0 → S2 transitions from 350 – 400 nm present in 1 are absent or greatly diminished and blue-shifted in 2 (Figure 3).
In summary, we have reported the first synthesis and X-ray crystal structure of a core modified zinc tetrahydro-hemiporphyrazine (HpH₆Zn(OTf)₂). In the presence of H₂ and palladium black, HpH₂Zn(OTf)₂ consumes two equivalents of hydrogen in a C₂-selective fashion. Upon heating the product in the presence of nitrobenzene, HpH₂Zn(OTf)₂ is oxidized to the starting material in quantitative yield. The reversible addition and removal of hydrogen from HpH₂Zn(OTf)₂ is easily monitored by changes in its color and fluorescence properties. The reversible cycling between these molecules might find future applications in hemiporphyrazine-based reduction/oxidation catalysis and/or hydrogen storage devices.

Notes and references

1 Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. Fax: +41 44 635 6891; Tel:+41 44 635 4244; Email:luedtke@oci.uzh.ch

† This article is part of the ChemComm ‘Emerging Investigators 2013’ themed issue.

‡ Electronic supplementary information (ESI) available. See DOI: xxxx

‡ Synthesis and characterization of 2: 1 (300 mg, 0.37 mmol) and Pd black (3 mg, 0.03 mmol) were stirred in methanol (2 ml) under a 1 atm H₂-atmosphere at 25 °C for 2 h. Pd black was removed by filtration over celite and the methanol volume was reduced to 1 mL under reduced pressure. The remaining solution was layered with diethylether/pentane (1:1, 0.5 ml). The resulting yellow crystals were isolated by filtration and washed with diethylether and CH₂Cl₂ to afford 2 as yellow crystals (278–30 mg, 90%). 1H-NMR (400 MHz, d₆-DMSO) 11.36 (s br, 2 H), 8.52 (d, J = 2.7, 2 H), 8.44 (d, J = 7.3, 2 H), 7.98 (d, J = 7.9, 2 H), 8.44 (d, J = 7.6, 2 H), 7.91 – 7.81 (m, 6 H), 6.98 (d, J = 7.9, 2 H), 6.87 (d, J = 8.3, 2 H), 6.34 (d, J = 2.5, 2 H); 13C-NMR (100 MHz, d₆-DMSO) 160.84, 158.58, 150.86, 144.79, 141.77, 132.43, 131.63, 124.79, 123.07, 108.03, 105.14, 75.93; Elem. Anal. for C₂₈H₂₂F₆N₈O₇S₂Zn: C 40.71, H 2.68, N 13.57; found C 40.56, H 2.75, N 13.44. Crystal data for 2: M = 826.02, monoclinic, space group C₂/c, a = 20.9506(3), b = 10.1673(1), c = 16.0497(2) Å, β = 107.343(1)°, V = 3263.34(8) Å³, T = 160 (1) K, Z = 4, µ = 0.975 mm⁻¹, 21655 collected reflections, 4547 independent reflections (RI = 0.0220, RI(I) = 0.0351 for I > 2σ(I) reflections, wR = 0.1009 for all data, S = 1.060, Δρmax = 0.80 e Å⁻³, Oxford Diffraction SuperNova diffractometer with Mo Kα radiation, λ = 0.71073 Å.

‡ Synthesis and characterization of 1: 2 (10.0 mg, 0.012 mmol) in nitrobenzene (5 ml) was stirred under N₂ at 180 °C for 3 h. The solution was cooled to room temperature and the resulting red solid HpH₂Zn(OTf)₂, 1 (9.8 mg, 0.012 mmol, 99%) was isolated by vacuum filtration and dried in vacuo. The analytical data matched those previously published.¹


This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00 | 3