Header

UZH-Logo

Maintenance Infos

Accuracy of cone-beam computed tomography at different resolutions assessed on the bony covering of the mandibular anterior teeth


Patcas, Raphael; Müller, Lukas; Ullrich, Oliver; Peltomäki, Timo (2012). Accuracy of cone-beam computed tomography at different resolutions assessed on the bony covering of the mandibular anterior teeth. American Journal of Orthodontics and Dentofacial Orthopedics, 141(1):41-50.

Abstract

INTRODUCTION: The aim of this study was to determine the accuracy of cone-beam computed tomography (CBCT) with different voxel resolutions. Measurements were made of the bony covering of the mandibular anterior teeth because this region is crucial in orthodontic treatment planning.
METHODS: CBCT data at 2 resolutions (0.125-mm and 0.4-mm voxels) were collected from 8 intact cadaver heads. The vertical position of the mucogingival junction was clinically assessed. After removal of the gingiva, vertical and horizontal bony measurements were taken, and the buccal alveolar bone margin was determined. Anatomic bony measures were compared with the CBCT measures, and the correlation of the mucogingival junction measures to the buccal alveolar bone margin measures was evaluated.
RESULTS: Bony measures obtained with CBCT were accurate and differed only slightly from the physical findings. The mean differences, ranging from -0.13 to +0.13 mm, were statistically not significant, but the limits of agreement showed discrepancies in the measurements as large as 2.10 mm, depending on measurement and resolution. Buccal alveolar bone margin measurements correlated with the mucogingival junction measurements (P <0.001). On average, the mucogingival junction was 1.67 mm more apical than the buccal alveolar bone margin (CI 95%, 1.35-1.98 mm).
CONCLUSIONS: CBCT renders anatomic measures reliably and is an appropriate tool for linear measurements. Presence of soft tissue as well as different voxel size affect the precision of the data. A customized resolution protocol must be chosen according to the accuracy needed. However, even the 0.125-mm voxel protocol does not depict the thin buccal alveolar bone covering reliably, and there is a risk of overestimating fenestrations and dehiscences. The mucogingival junction appears to follow the buccal alveolar bone margin in a parallel line.

Abstract

INTRODUCTION: The aim of this study was to determine the accuracy of cone-beam computed tomography (CBCT) with different voxel resolutions. Measurements were made of the bony covering of the mandibular anterior teeth because this region is crucial in orthodontic treatment planning.
METHODS: CBCT data at 2 resolutions (0.125-mm and 0.4-mm voxels) were collected from 8 intact cadaver heads. The vertical position of the mucogingival junction was clinically assessed. After removal of the gingiva, vertical and horizontal bony measurements were taken, and the buccal alveolar bone margin was determined. Anatomic bony measures were compared with the CBCT measures, and the correlation of the mucogingival junction measures to the buccal alveolar bone margin measures was evaluated.
RESULTS: Bony measures obtained with CBCT were accurate and differed only slightly from the physical findings. The mean differences, ranging from -0.13 to +0.13 mm, were statistically not significant, but the limits of agreement showed discrepancies in the measurements as large as 2.10 mm, depending on measurement and resolution. Buccal alveolar bone margin measurements correlated with the mucogingival junction measurements (P <0.001). On average, the mucogingival junction was 1.67 mm more apical than the buccal alveolar bone margin (CI 95%, 1.35-1.98 mm).
CONCLUSIONS: CBCT renders anatomic measures reliably and is an appropriate tool for linear measurements. Presence of soft tissue as well as different voxel size affect the precision of the data. A customized resolution protocol must be chosen according to the accuracy needed. However, even the 0.125-mm voxel protocol does not depict the thin buccal alveolar bone covering reliably, and there is a risk of overestimating fenestrations and dehiscences. The mucogingival junction appears to follow the buccal alveolar bone margin in a parallel line.

Statistics

Citations

46 citations in Web of Science®
52 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 28 Jan 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
04 Faculty of Medicine > Center for Dental Medicine > Clinic for Orthodontics and Pediatric Dentistry
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:28 Jan 2013 09:17
Last Modified:05 Apr 2016 16:23
Publisher:Elsevier
ISSN:0889-5406
Publisher DOI:https://doi.org/10.1016/j.ajodo.2011.06.034
PubMed ID:22196184

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations