Header

UZH-Logo

Maintenance Infos

Early complementopathy after multiple injuries in humans


Abstract

After severe tissue injury, innate immunity mounts a robust systemic inflammatory response. However, little is known about the immediate impact of multiple trauma on early complement function in humans. In the present study, we hypothesized that multiple trauma results in immediate activation, consumption, and dysfunction of the complement cascade and that the resulting severe "complementopathy" may be associated with morbidity and mortality. Therefore, a prospective multicenter study with 25 healthy volunteers and 40 polytrauma patients (mean injury severity score = 30.3 ± 2.9) was performed. After polytrauma, serum was collected as early as possible at the scene, on admission to the emergency room (ER), and 4, 12, 24, 120, and 240 h post-trauma and analyzed for the complement profile. Complement hemolytic activity (CH-50) was massively reduced within the first 24 h after injury, recovered only 5 days after trauma, and discriminated between lethal and nonlethal 28-day outcome. Serum levels of the complement activation products C3a and C5a were significantly elevated throughout the entire observation period and correlated with the severity of traumatic brain injury and survival. The soluble terminal complement complex SC5b-9 and mannose-binding lectin showed a biphasic response after trauma. Key fluid-phase inhibitors of complement, such as C4b-binding protein and factor I, were significantly diminished early after trauma. The present data indicate an almost synchronical rapid activation and dysfunction of complement, suggesting a trauma-induced complementopathy early after injury. These events may participate in the impairment of the innate immune response observed after severe trauma.

Abstract

After severe tissue injury, innate immunity mounts a robust systemic inflammatory response. However, little is known about the immediate impact of multiple trauma on early complement function in humans. In the present study, we hypothesized that multiple trauma results in immediate activation, consumption, and dysfunction of the complement cascade and that the resulting severe "complementopathy" may be associated with morbidity and mortality. Therefore, a prospective multicenter study with 25 healthy volunteers and 40 polytrauma patients (mean injury severity score = 30.3 ± 2.9) was performed. After polytrauma, serum was collected as early as possible at the scene, on admission to the emergency room (ER), and 4, 12, 24, 120, and 240 h post-trauma and analyzed for the complement profile. Complement hemolytic activity (CH-50) was massively reduced within the first 24 h after injury, recovered only 5 days after trauma, and discriminated between lethal and nonlethal 28-day outcome. Serum levels of the complement activation products C3a and C5a were significantly elevated throughout the entire observation period and correlated with the severity of traumatic brain injury and survival. The soluble terminal complement complex SC5b-9 and mannose-binding lectin showed a biphasic response after trauma. Key fluid-phase inhibitors of complement, such as C4b-binding protein and factor I, were significantly diminished early after trauma. The present data indicate an almost synchronical rapid activation and dysfunction of complement, suggesting a trauma-induced complementopathy early after injury. These events may participate in the impairment of the innate immune response observed after severe trauma.

Statistics

Citations

26 citations in Web of Science®
27 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Trauma Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:April 2012
Deposited On:04 Feb 2013 14:31
Last Modified:05 Jan 2017 14:50
Publisher:Lippincott, Williams & Wilkins
ISSN:1073-2322
Publisher DOI:https://doi.org/10.1097/SHK.0b013e3182471795
PubMed ID:22258234

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations