Header

UZH-Logo

Maintenance Infos

TRPV6 and Calbindin-D9k-expression and localization in the bovine uterus and placenta during pregnancy


Sprekeler, N; Kowalewski, M P; Boos, A (2012). TRPV6 and Calbindin-D9k-expression and localization in the bovine uterus and placenta during pregnancy. Reproductive Biology and Endocrinology, 10:66.

Abstract

BACKGROUND: Transient receptor potential channel type 6 (TRPV6) and Calbindin-D9k (CaBP-9k) are involved in the active calcium (Ca2+) transport mechanism in many tissues including placenta and uterus, suggesting a role in the establishment and maintenance of pregnancy. Moreover, TRPV6 and CaBP-9k seem to support the materno-fetal Ca2+ transport that is crucial for fetal Ca2+ homeostasis, bone growth and development. However, it is unknown if these proteins are also involved in the aetiology of pathologies associated with parturition in cows, such as retained fetal membranes (RFM). The aim of the current study was to create an expression profile of uterine and placentomal TRPV6 and CaBP-9k mRNAs and proteins during pregnancy and postpartum in cows with and without fetal membrane release. METHODS: Uteri and placentomes of 27 cows in different stages of pregnancy and placentomes of cows with and without RFM were collected. Protein and mRNA expression of TRPV6 and CaBP-9k was investigated by real-time PCR, immunohistochemistry and Western blot. RESULTS: In the uterine endometrium, highest TRPV6 and CaBP-9k expression was found in the last trimester of pregnancy, with a particular increase of protein in the glandular epithelium. In the placentomes, a gradual increase in TRPV6 mRNA was detectable towards parturition, while protein expression did not change significantly. Placentomal CaBP-9k expression did not change significantly throughout pregnancy but immunohistochemistry revealed an increase in staining intensity in the maternal crypt epithelium. Immunohistochemical, stronger placental CaBP-9k signals were seen in animals with RFM compared to animals with an undisturbed fetal membrane release, while protein levels, measured by Western blot analyses did not change significantly. CONCLUSIONS: The results of the present study demonstrate a dynamic expression of TRPV6 and CaBP-9k during pregnancy in the bovine uterine endometrium and placentomes, suggesting a functional role for these proteins in Ca2+ metabolism during pregnancy. The temporal and spatial expression patterns indicate that TRPV6 and CaBP-9k may be involved in materno-fetal Ca2+ transport, mainly through an interplacentomal transport, and that both proteins may participate in physiological processes that are crucial for fetal and placental development. However, neither TRPV6 nor CaBP-9k seem to be causative in the retention of fetal membranes.

Abstract

BACKGROUND: Transient receptor potential channel type 6 (TRPV6) and Calbindin-D9k (CaBP-9k) are involved in the active calcium (Ca2+) transport mechanism in many tissues including placenta and uterus, suggesting a role in the establishment and maintenance of pregnancy. Moreover, TRPV6 and CaBP-9k seem to support the materno-fetal Ca2+ transport that is crucial for fetal Ca2+ homeostasis, bone growth and development. However, it is unknown if these proteins are also involved in the aetiology of pathologies associated with parturition in cows, such as retained fetal membranes (RFM). The aim of the current study was to create an expression profile of uterine and placentomal TRPV6 and CaBP-9k mRNAs and proteins during pregnancy and postpartum in cows with and without fetal membrane release. METHODS: Uteri and placentomes of 27 cows in different stages of pregnancy and placentomes of cows with and without RFM were collected. Protein and mRNA expression of TRPV6 and CaBP-9k was investigated by real-time PCR, immunohistochemistry and Western blot. RESULTS: In the uterine endometrium, highest TRPV6 and CaBP-9k expression was found in the last trimester of pregnancy, with a particular increase of protein in the glandular epithelium. In the placentomes, a gradual increase in TRPV6 mRNA was detectable towards parturition, while protein expression did not change significantly. Placentomal CaBP-9k expression did not change significantly throughout pregnancy but immunohistochemistry revealed an increase in staining intensity in the maternal crypt epithelium. Immunohistochemical, stronger placental CaBP-9k signals were seen in animals with RFM compared to animals with an undisturbed fetal membrane release, while protein levels, measured by Western blot analyses did not change significantly. CONCLUSIONS: The results of the present study demonstrate a dynamic expression of TRPV6 and CaBP-9k during pregnancy in the bovine uterine endometrium and placentomes, suggesting a functional role for these proteins in Ca2+ metabolism during pregnancy. The temporal and spatial expression patterns indicate that TRPV6 and CaBP-9k may be involved in materno-fetal Ca2+ transport, mainly through an interplacentomal transport, and that both proteins may participate in physiological processes that are crucial for fetal and placental development. However, neither TRPV6 nor CaBP-9k seem to be causative in the retention of fetal membranes.

Statistics

Citations

7 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

41 downloads since deposited on 23 Jan 2013
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Anatomy
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:23 Jan 2013 08:34
Last Modified:08 Aug 2017 03:45
Publisher:BioMed Central
ISSN:1477-7827
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1477-7827-10-66
PubMed ID:22931437

Download

Download PDF  'TRPV6 and Calbindin-D9k-expression and localization in the bovine uterus and placenta during pregnancy'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)