Header

UZH-Logo

Maintenance Infos

Potential of collagen cross-linking therapies to mediate tendon mechanical properties


Fessel, Gion; Gerber, Christian; Snedeker, Jess G (2012). Potential of collagen cross-linking therapies to mediate tendon mechanical properties. Journal of Shoulder and Elbow Surgery, 21(2):209-217.

Abstract

Collagen cross-links are fundamental to the mechanical integrity of tendon, with orderly and progressive enzymatic cross-linking being central to healthy development and injury repair. However, the nonenzymatic cross-links that form as we age are associated with increased tendon brittleness, diminished mechanical resistance to injury, and impaired matrix remodeling. Collagen cross-linking thus sits at the center of tendon structure and function, with important implications to age, disease, injury, and therapy. The current review touches on these aspects from the perspective of their potential relevance to the shoulder surgeon. We first introduce the most well-characterized endogenous collagen cross-linkers that enable fibrillogenesis in development and healing. We also discuss the glycation-mediated cross-links that are implicated in age- and diabetes-related tendon frailty and summarize work toward therapies against these disadvantageous cross-links. Conversely, we discuss the introduction of exogenous collagen cross-links to augment the mechanical properties of collagen-based implants or native tendon tissue. We conclude with a summary of our early results using exogenous collagen cross-linkers to prevent tendon tear enlargement and eventual failure in an in vitro model of partial tendon tear.

Abstract

Collagen cross-links are fundamental to the mechanical integrity of tendon, with orderly and progressive enzymatic cross-linking being central to healthy development and injury repair. However, the nonenzymatic cross-links that form as we age are associated with increased tendon brittleness, diminished mechanical resistance to injury, and impaired matrix remodeling. Collagen cross-linking thus sits at the center of tendon structure and function, with important implications to age, disease, injury, and therapy. The current review touches on these aspects from the perspective of their potential relevance to the shoulder surgeon. We first introduce the most well-characterized endogenous collagen cross-linkers that enable fibrillogenesis in development and healing. We also discuss the glycation-mediated cross-links that are implicated in age- and diabetes-related tendon frailty and summarize work toward therapies against these disadvantageous cross-links. Conversely, we discuss the introduction of exogenous collagen cross-links to augment the mechanical properties of collagen-based implants or native tendon tissue. We conclude with a summary of our early results using exogenous collagen cross-linkers to prevent tendon tear enlargement and eventual failure in an in vitro model of partial tendon tear.

Statistics

Citations

22 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 31 Jan 2013
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:February 2012
Deposited On:31 Jan 2013 13:05
Last Modified:07 Dec 2017 19:00
Publisher:Elsevier
ISSN:1058-2746
Publisher DOI:https://doi.org/10.1016/j.jse.2011.10.002
PubMed ID:22244064

Download