Header

UZH-Logo

Maintenance Infos

Origin and evolution of Chrysobalanaceae: insights into the evolution of plants in the Neotropics


Bardon, Léa; Chamagne, Juliette; Dexter, Kyle G; Sothers, Cynthia A; Prance, Ghillean T; Chave, Jérôme (2013). Origin and evolution of Chrysobalanaceae: insights into the evolution of plants in the Neotropics. Botanical Journal of the Linnean Society, 171(1):19-37.

Abstract

Some plant families show a striking imbalance in species diversity between the Neotropics and the Palaeotropics. The woody plant family Chrysobalanaceae is a typical example of this pattern, with 80% of the 531 species in the Neotropics. In order to test alternative interpretations for this pattern, we generated a dated phylogenetic hypothesis for Chrysobalanaceae, using DNA sequence data from one nuclear and six plastid markers. Using a maximum likelihood approach, we jointly inferred ancestral areas and diversification rates in the Neotropics and Palaeotropics. We found that Chrysobalanaceae most probably originated in the Palaeotropics about 80 Mya. The family dispersed into the Neotropics at least four times beginning 40–60 Mya, with at least one back-dispersal to the Palaeotropics. Members of Chrysobalanaceae have experienced higher extinction, speciation and net diversification rates in the Neotropics. Hence, the high species diversity of Chrysobalanaceae in the Neotropics appears to be primarily caused by a higher speciation rate in this region. Several recent studies have shown high diversification rates in Neotropical plant families, but have focused on Andean-centred taxa. Ours is the first study to find a similar pattern in a family for which the centre of diversity is in eastern and central Amazonia.

Abstract

Some plant families show a striking imbalance in species diversity between the Neotropics and the Palaeotropics. The woody plant family Chrysobalanaceae is a typical example of this pattern, with 80% of the 531 species in the Neotropics. In order to test alternative interpretations for this pattern, we generated a dated phylogenetic hypothesis for Chrysobalanaceae, using DNA sequence data from one nuclear and six plastid markers. Using a maximum likelihood approach, we jointly inferred ancestral areas and diversification rates in the Neotropics and Palaeotropics. We found that Chrysobalanaceae most probably originated in the Palaeotropics about 80 Mya. The family dispersed into the Neotropics at least four times beginning 40–60 Mya, with at least one back-dispersal to the Palaeotropics. Members of Chrysobalanaceae have experienced higher extinction, speciation and net diversification rates in the Neotropics. Hence, the high species diversity of Chrysobalanaceae in the Neotropics appears to be primarily caused by a higher speciation rate in this region. Several recent studies have shown high diversification rates in Neotropical plant families, but have focused on Andean-centred taxa. Ours is the first study to find a similar pattern in a family for which the centre of diversity is in eastern and central Amazonia.

Statistics

Citations

24 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 14 Feb 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2013
Deposited On:14 Feb 2013 11:54
Last Modified:05 Apr 2016 16:25
Publisher:Wiley-Blackwell
ISSN:0024-4074
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/j.1095-8339.2012.01289.x

Download